Coupled cluster calculations for ν scattering on medium-mass nuclei

Joanna Sobczyk

<u>In collaboration with</u> Sonia Bacca Bijaya Acharya Gaute Hagen

Improving the Art of Neutrino-Nuclei Modelling with Charged Lepton Scattering Data 29/03/2022

Motivation

Motivation

Neutrinos challenge ab initio nuclear theory

Controllable approximations within ab initial nuclear theory

Nuclear response

Ab initio nuclear theory for neutrinos

5

Ab initio nuclear theory for neutrinos

Nuclear Hamiltonian

 $\mathcal{H} | \Psi \rangle = E | \Psi \rangle$

Electroweak currents

$$J^{\mu} = (\rho, \vec{j})$$

Many-body method

$$\mathscr{A} = \langle \Psi_m | J_\mu | \Psi_n \rangle$$

Coupled cluster method

Reference state (Hartree-Fock): $|\Psi\rangle$

Include correlations through e^T operator

similarity transformed Hamiltonian (non-Hermitian)

$$e^{-T}\mathscr{H}e^{T}|\Psi\rangle\equiv\bar{\mathscr{H}}|\Psi\rangle=E|\Psi\rangle$$

Expansion:
$$T = \sum t_a^i a_a^\dagger a_i + \sum t_{ab}^{ij} a_a^\dagger a_b^\dagger a_i a_j + \dots$$

singles doubles

←coefficients obtained through coupled cluster equations

Coupled cluster method

 \checkmark Controlled approximation through truncation in T

- ✓ Polynomial scaling with *A* (predictions for ¹3²Sn and ²⁰⁸Pb)
- ✓ Works most efficiently for doubly magic nuclei

nature physics https://doi.org/10.1038/s41567-019-0450 Discrepancy between experimental and theoretical β -decay rates resolved from first principles P.Gysbers^{1,2}, G.Hagen^{3,4*}, J.D.Holt³, G.R.Jansen^{3,5}, T.D.Morris^{3,4,6}, P.Navrátil³, T.Papenbrock^{3,4}, S. Quaglioni ¹⁰⁷, A. Schwenk^{8,9,10}, S. R. Stroberg^{1,11,12} and K. A. Wendt⁷ Ab initio predictions link the neutron skin of ²⁰⁸Pb to nuclear forces Baishan Hu,^{1,*} Weiguang Jiang,^{2,*} Takayuki Miyagi,^{1,3,*} Zhonghao Sun,^{4,5,*} Andreas Ekström,² Christian Forssén,^{2,†} Gaute Hagen,^{5,4,1} Jason D. Holt,^{1,6} Thomas Papenbrock,^{4,5} S. Ragnar Stroberg,^{7,8} and Ian Vernon⁹ ¹TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada ²Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden ³ Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany ⁴Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ⁵Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁶Department of Physics, McGill University, 3600 Rue University, Montréal, QC H3A 2T8, Canada ⁷Department of Physics, University of Washington, Seattle, Washington 98195, USA ⁸Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA ⁹Department of Mathematical Sciences, University of Durham, South Road, Durham, DH1 3LE, UK

Coupled-Cluster Calculations of Neutrinoless Double-β Decay in ⁴⁸Ca S. Novario,^{1,2} P. Gysbers,^{3,4} J. Engel[©],⁵ G. Hagen,^{2,1,3} G. R. Jansen[©],^{6,2} T. D. Morris,² P. Navrátil[©],³ T. Papenbrock^(D),^{1,2} and S. Quaglioni^(D) ¹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ²Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ³TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada ⁴Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada ⁵Department of Physics, University of North Carolina, Chapel Hill, North Carolina 27514, USA ⁶National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁷Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA (Received 23 August 2020; revised 15 January 2021; accepted 6 April 2021; published 7 May 2021) We use coupled-cluster theory and nuclear interactions from chiral effective field theory to compute the nuclear matrix element for the neutrinoless double- β decay of ⁴⁸Ca. Benchmarks with the no-core shell model in several light nuclei inform us about the accuracy of our approach. For ⁴⁸Ca we find a relatively small matrix element. We also compute the nuclear matrix element for the two-neutrino double- β decay of ⁴⁸Ca with a quenching factor deduced from two-body currents in recent *ab initio* calculation of the Ikeda

Quasielastic response

- Momentum transfer ~hundreds MeV
- Upper limit for ab initio methods
- Important mechanism for T2HK, DUNE
- Role of final state interactions
- Role of 1-body and 2-body currents

First step: analyse the longitudinal response for **electron scattering**

$$\frac{d\sigma}{d\omega dq}\Big|_e = \sigma_M \left(v_L R_L + v_T R_T \right)$$

charge operator
$$\hat{\rho}(q) = \sum_{j=1}^{Z} e^{iqz'_j}$$

Longitudinal response

Longitudinal response

PRL 127 (2021) 7, 072501 JES, B. Acharya, S. Bacca, G. Hagen

First ab-initio results for many-body system of 40 nucleons

Transverse response

- This allows to predict electron-nucleus cross-section
- Currently only 1-body current

Low/high energies

Spectral function from coupled cluster

JES et al, in preparation (2022)

Spectral function from coupled cluster

Data: Phys. Rev. D 101, 112004 (2020)

JES et al, in preparation (2022)

Summary & Outlook

- Nuclear ab initio methods: connection to underlying QCD through chiral hamiltonians & uncertainty control
- First results from the coupled cluster theory: on the way to obtain cross-section for neutrino scattering on medium-mass nuclei
- With **spectral functions** we gain direct impact on the experimental analysis (through Monte Carlo event generators used by experimental collaboration)

Thank you for attention!

Backup

Electroweak currents

known to give significant contribution for neutrinonucleus scattering

Current decomposition into multipoles needed for various *ab initio* methods: CC, No Core Shell Model, In-Medium Similarity Renormalization Group

$$\nu(\bar{\nu}) + d \to \mu^{\pm} + X$$

Multipole decomposition for 1and 2-body EW currents

> B. Acharya, S. Bacca *Phys.Rev.C* 101 (2020) 1, 015505

Lorentz Integral Transform

$$R_{\mu\nu}(\omega,q) = \sum_{f} \langle \Psi | J_{\mu}^{\dagger} | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu} | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

continuum spectrum

Instead we calculate

$$S_{\mu\nu}(\omega,q) = \int d\sigma K(\omega,\sigma) R_{\mu\nu}(\omega,q) = \int d\sigma \langle \Psi | J_{\mu}^{\dagger} K(\mathcal{H} - E_0,\sigma) J_{\nu} | \Psi \rangle$$

 $S_{\mu\nu}$ has to be inverted to get access to $R_{\mu\nu}$

Lorentzian kernel: $K_{\Lambda}(\omega, \sigma) = \frac{1}{\pi} \frac{\Lambda}{\Lambda^2 + (\omega - \sigma)^2}$

LIT-CC used for photo-absorption

Electrons for neutrinos

$$\frac{d\sigma}{d\omega dq}\Big|_{\nu/\bar{\nu}} = \sigma_0 \Big(v_{CC} R_{CC} + v_{CL} R_{CL} + v_{LL} R_{LL} + v_T R_T \pm v_{T'} R_{T'} \Big)$$
$$\frac{d\sigma}{d\omega dq}\Big|_e = \sigma_M \Big(v_L R_L + v_T R_T \Big)$$

 \checkmark much more precise data

✓ we can get access to R_L and R_T separately (Rosenbluth separation)

 \checkmark experimental programs of electron scattering in JLab, MESA

Coulomb sum rule

$$m_0(q) = \int d\omega R_L(\omega, q) = \sum_{f \neq 0} |\langle \Psi_f | \hat{\rho} | \Psi \rangle|^2 = \langle \Psi | \hat{\rho}^{\dagger} \hat{\rho} | \Psi \rangle - |F_{el}(q)|^2$$

JES, B. Acharya, S.Bacca, G. Hagen Phys.Rev.C 102 (2020) 064312

PRL 127 (2021) 7, 072501 JES, B. Acharya, S. Bacca, G. Hagen

CEvNS on ⁴⁰Ar

$$\frac{d\sigma}{dT}(E_{\nu},T) \simeq \frac{G_F^2}{4\pi} M \left[1 - \frac{MT}{2E_n u^2} \right] Q_W^2 F_W^2(q^2) \propto N^2 \qquad Q_W = N - (1 - 4\sin^2\theta_W)Z$$

$$F_W(q^2) = \frac{1}{Q_W} \left[NF_n(q^2) - (1 - 4\sin^2\theta_W)ZF_p(q^2) \right]$$

Nuclear weak form-factor

CEvNS on ⁴⁰Ar

- Coupled-cluster predictions for the weak form factor and cross section
- Small theoretical uncertainty

LIT-CC method

4He photo-absorption

S. Bacca et al. *Phys.Rev.C* 90 (2014) 6, 064619

giant dipole resonance in ¹⁶O

Motivation

source: symmetrymagazin.org