Prospects of electronnucleus studies at LDMX NuSTEC Workshop on Electron Scattering

March 30, 2022

Many thanks to

Artur Ankowski

Shirley Li

Exciting opportunity to study e-A physics at SLAC

- LDMX (Light Dark Matter eXperiment) detector design was conceived to search for sub-GeV dark matter
- Electron beam energy in the S30XL beamline is 4 GeV (8 GeV), great to make measurements for DUNE
- LDMX happens to have advantageous characteristics: wide angular acceptance of the produced charged hadrons (p, π), good momentum resolution, ability to detect neutrons
- Opportunity to gather both inclusive data and detailed information about the final-state hadronic system

Schematic design

Tracking acceptance in the forward 40° cone, HCal in the 65° cone

Schematic design

Simulated events in DUNE (heat map) vs coverage in electron angle and pT

Goal: precision studies of neutrino oscillations as a function of energy

 Reconstruction of energy is key and for this we need accurate cross section models

Measuring neutrino energy at DUNE/NOvA

- In the beam of 1-4 GeV, a variety of final states are produced, with protons, pions, and neutrons
- Because of this, lepton kinematics alone is insufficient to infer E_{ν}
- Have to use calorimetric reconstruction: measure energy of all final-state particles
- Generators are needed to fill in missing information
 - E.g., neutron losses, low-energy p/pi-discrimination, etc

see arXiv:1811.06159, arXiv:2007.13336

Does this really matter for oscillation measurements?

NOvA 2019

Figure from NOvA, arXiv:1906.04907

• $\theta_{23} = \pi/4$ implies a steeply rising spectrum

cf. NOVA 2016

More events in the dip could be interpreted as evidence of nonmaximal mixing

Best Fit (in NH): $\left|\Delta m_{32}^2\right| = 2.67 \pm 0.12 \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$

Maximal mixing excluded at 2.5σ

Invitation

2.2 GeV electron beam JLAB

Predictions beyond the quasielastic peak are in dramatic disagreement with the data

Different kinematic regimes

- Problems with many other datasets
- Can be systematically studied using carbon

Decisive test: comparison to hydrogen and deuterium

- Large discrepancies originate in (mis)modeling of hadronic processes
 - Notable double counting in the RES->DIS region

For details, see e-Print: 2006.11944 DOI: 10.1103/PhysRevD.102.053001

Mapping out the pattern of discrepancies

Large discrepancies persist for other generators

At high energies, the SIS region is especially challenging

Large discrepancies persist for other generators

Generally, overlaps between different mechanisms present a lot of conceptual challenge

Instructive: comparison with e4nu data

The same double-counting is manifested at high E

Important: large discrepancies among generator predictions for exclusive channels

Simulation for the LDMX detector

e-Print: 1912.06140 [hep-ph] DOI: <u>10.1103/PhysRevD.101.053004</u>

Conclusions I

- There are a number of conclusions one can draw from these analyses
 - In some cases, there are specific implementation issues, e.g. Bodek-Yang, Delta peak and QE in sub-GeV
 - In other cases, the problems are more foundational, especially in the "overlaps" between regimes (e.g., RES and DIS; QE, MEC, RES). All generators struggle with this, to a varying degree -> not trivial

Conclusions II

- To make progress on the foundational challenges, we need new, high-quality data
- Both the final-state electron and the hadronic system should be measures
 - Composition and energy distribution between protons, pions, gammas, neutrons
 - Large solid angle coverage in the forward cone
 - Ideally, would prefer CLAS (e4nu) + LDMX data