

The Developing $\mu 4\nu$ Initiative

NuSTEC Workshop on Charged Lepton Scattering

by Josh Barrow, MIT-TAU, Zuckerman Postdoctoral Scholar

QE-like $\nu_{\mu} Ar \rightarrow 1 \mu 1 p$

Definitive energy transfer knowledge limited

2

QE-like $\mu Ar \rightarrow 1\mu 1p$

Energy transfer knowledge not limited to only final state particles

QE-like $\mu Ar \rightarrow 1\mu 1p$

Energy transfer knowledge not limited to only final state particles

More information about kinematics given initial track leg

In Situ μ + Ar

- Cosmic muon tracks deposit energy in ~understood ways
- Incoming ℓ^{\pm} energy can be reconstructed
 - Find energy just before ℓ[±] interaction
 - Multiple Coulomb scattering (MCS)
 - Fast timing from veto systems (in principle)
- Use "normal" ν_ℓ methods to assess final state
 - Can similarly constrain outgoing ℓ[±] with MCS
- Chief goals for $\mu 4\nu$ via cosmics:
 - Determine bias in $E_{\nu_{\mu}}$ (mis)reconstruction

Multiprong (4) QE-like candidate

Current focus of my own studies

Multiprong (3) QE-like candidate

Expected QE-like Data Rates

- QE-like proton $(\mu + Ar \rightarrow p + \mu + X)$ candidates
 - Estimate from **CORSIKA flux and** $\sigma_{e{
 m Ar}}^{{
 m QE,EM}}$:
 - \sim 4000 cosmic μ per second
 - ≥ 1Hz true QE-like interactions above threshold

- Full analysis for estimation underway
 - Utilize MicroBooNE EXT unbiased data

Courtesy of A. Ashkenazi and W. Van De Pontseele

Measuring p_{μ} Using MCS in LArTPCs

Muons traverse a medium, are scattered off nuclei

- Tracks divided into segments
 - Scattering angles between consecutive segments measured
 - Particle momentum calculated from likelihood method

Amir Gruber

Energy

to only

A Simplified View of LArTPC

A single plane can be studied as a facsimile

Trigger Primitives Access Waveforms Directly

Trigger Primitives Access Waveforms Directly

Trigger Primitives Access Waveforms Directly

Multiprong Trigger Design

- Considers "hits" of trigger primitives
 - Locations in time and wire number
 - Effectively a "cartesian" plane
- Treat every hit as a potential vertex
 - Consider surrounding hits only to try and find "tracks"
 - Outer box/"radius" of activity
- Transform: semi-cylindrical coordinates
 - Use θ to differentiate "tracks" from one another from

This greatly limits the number of possible tracks of particular angles which can be triggered on

→ Require \geq 3 for multiprong!

μ4ν Summary

- Cosmic QE-like EM events $(\mu + Ar \rightarrow \mu + Np + X)$
 - Offer powerful facsimile to v_{μ} CC events
 - More information from incoming lepton
 - Final state can be studies as if from u_{μ} interaction
- Deliverables in $\mu 4\nu$ via cosmics:
 - Select $1\mu 1p$ via trigger algorithm on data
 - Determine bias in $E_{
 u_{\mu}}$ (mis)reconstruction
 - Improve MCS for uncontained tracks
 - Apply as calibrations to ν_{μ} CC interactions

Thanks to the team!