

DUNE COMPUTING UPDATE

H. SCHELLMAN (OREGON STATE) FOR THE COMPUTING CONSORTIUM

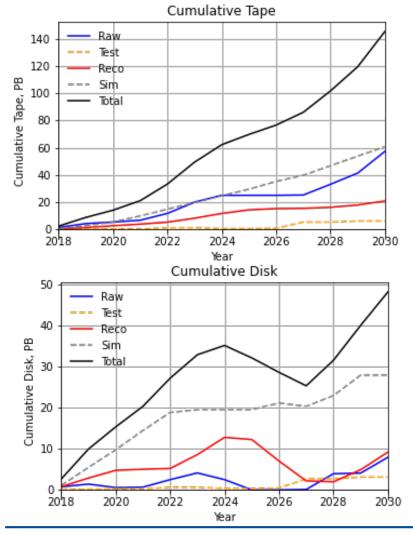
Office of Science

CDR progress

- Major design documents being finalized
 - Frameworks requirements DONE -> HSF
 - Hardware data base In production
 - SAM replacement
 - Metadata catalog prototype
 - Rucio in progress
 - Data dispatcher design
 - Workflow dispatcher design
 - DAQ-Offline interface requirements
 - Use cases
 - ProtoDUNE
 - Analysis

Two parts to Computing Infrastructure

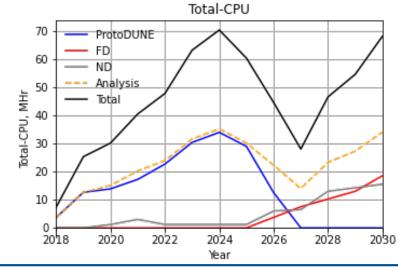
Development and Operations


Institution	Country
York University	Canada
CERN	CERN
IN2P3	France
Edinburgh	UK
Manchester	UK
RAL/STFC	UK
Queen Mary Univ. London	UK
Argonne*	USA
BNL*	USA
Colorado State*	USA
Fermilab*	USA
LBNL	USA
Minnesota*	USA
Oregon State University*	USA
Wichita State*	USA

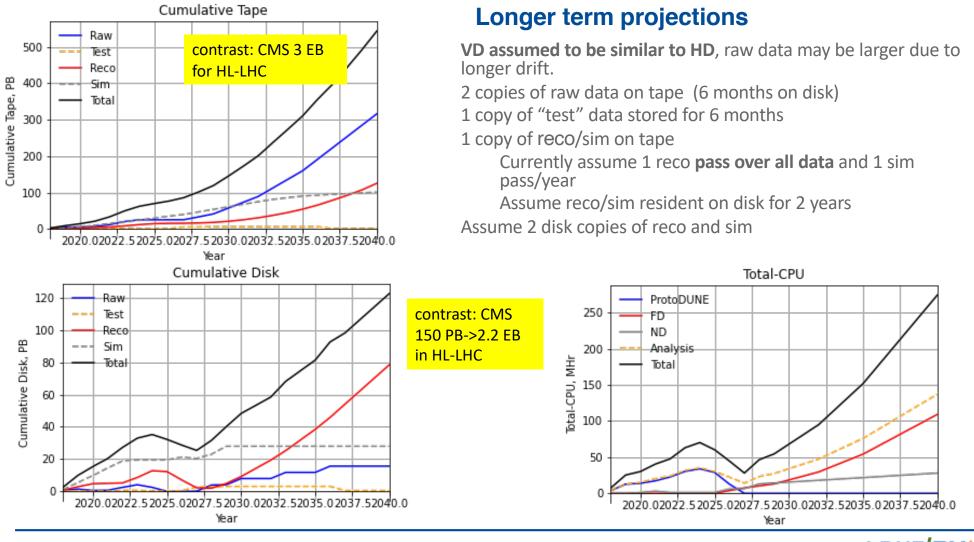
Hardware contributions

Facility	Country
CBPF	BR
CA_Victoria	CA
CERN	CERN
FZU	CZ
PIC/CIEMAT	ES
CCIN2P3	FR
TIFR	IN
SURF/SARA	NL
JINR	RU
GridPP	UK
OSG	US
FNAL	US
BNL	US

* US computing consortium

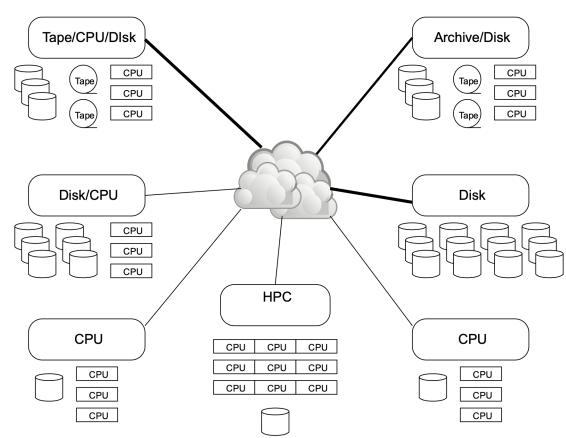

CDR - Resource estimates to 2030

2 copies of raw data on tape (6 months on disk)1 copy of "test" data stored for 6 months1 copy of reco/sim on tape


Currently assume 1 reco pass over all data and 1 sim pass/year

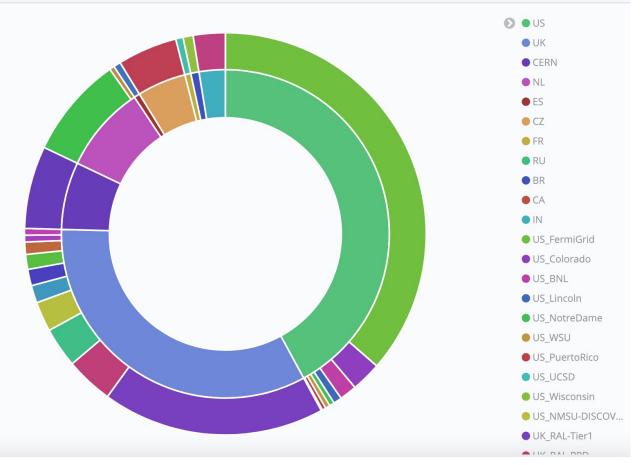
Assume reco/sim resident on disk for 2 years Assume 2 disk copies of reco and sim

impose shorter lifetimes on tests and intermediate sim steps.

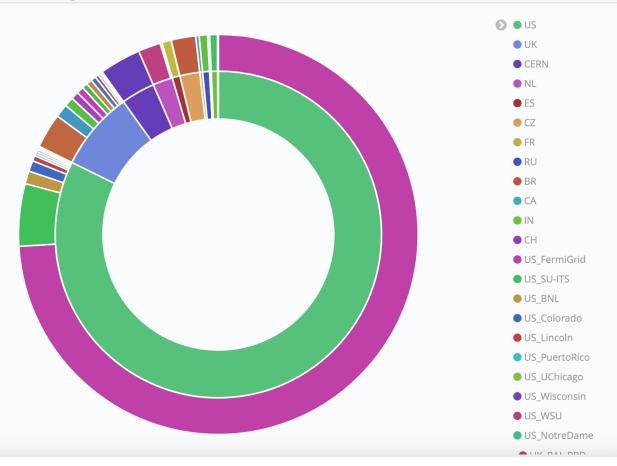

4 9/12/21 Computing

CDR - Distributed computing model Does this work?

- Less "tiered" than current WLCG model
- Collaborating institutions (or groups of institutions) provide significant services (disk/CPU/archival)
- **Rucio** places multiple copies of datasets
- Workload/Data management system match data with appropriate delivery method
 - File already near local CPU
 - smart file location info
 - Direct copy to local cache
- Assumes good network connectivity
 - Currently working for 8,000 concurrent reconstruction jobs
 - Working with ESNET and European networking

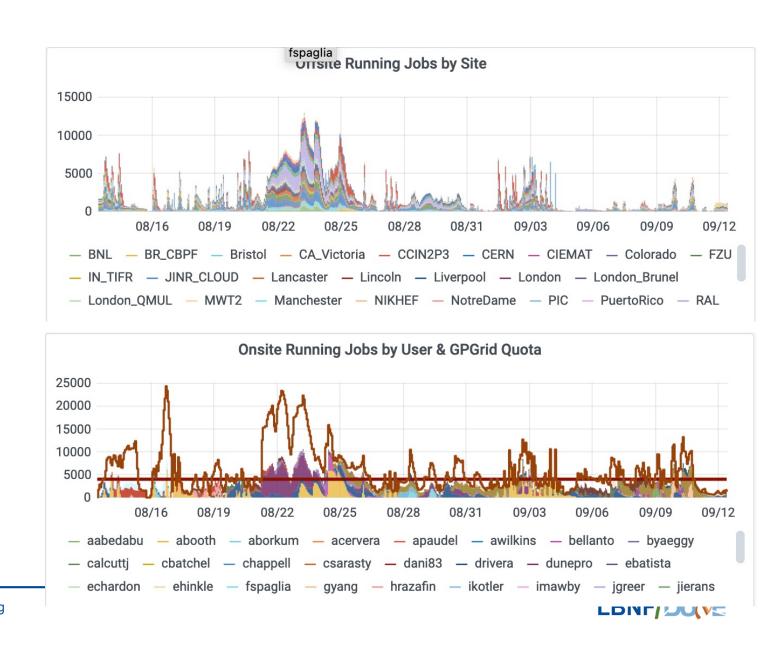


Where we are now: Production pass 4a


- This shows August 2021 contributions to production
- TIFR/India (new!) has lots of memory/core so is contributing substantially to simulation

Where we are now: Analysis is moving offsite

- This shows August 2021 contributions to analysis
- US sites are contributing as are many sites worldwide

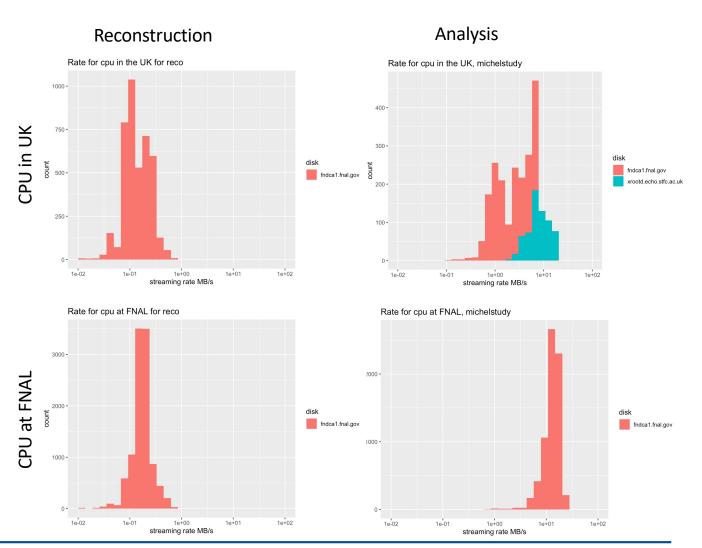


Mainly user analysis

Production team gaining new members

9/12/21 Computing

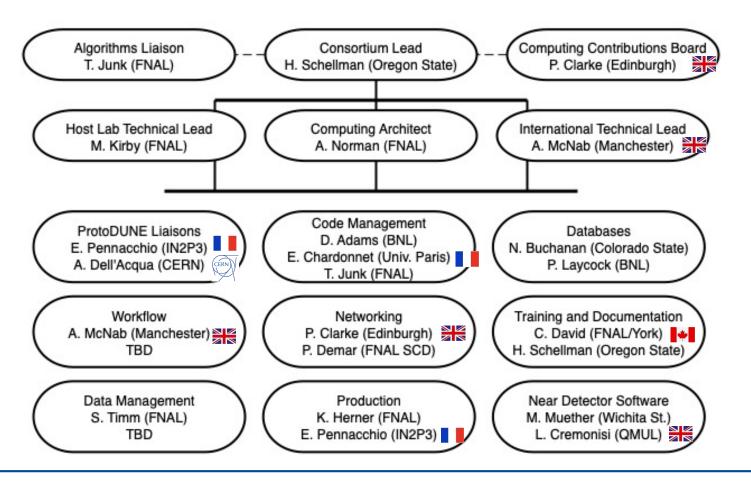
9


Responsibilities

- Tape storage
 - raw data 2 copies 1 at FNAL
 - sim/reco 1 copy
- CPU
 - FNAL 25%, collaboration 75%
- Disk storage
 - National contributions 5-20% of the total from many countries
 - Pledges for 2021/2022 now being collected
- Network:
 - Working with ESNET on SURF->FNAL networking
 - Discussions with international partners (DUNEONE) on offshore compute network
 - Significant monitoring efforts underway

Data location studies

- OSU/FNAL project
- Mine sam event logs to study streaming rates vs RSE, CPU site, and application
- Red is FNAL-dCache
- Teal is RAL-Echo
- (x axis is log10(rate/MB) from 0.01 MB/s to 100 MB/s


11 9/12/21 Computing

Conclusion on hardware resources

- We have identified and are formalizing resource contributions from collaborators worldwide.
 - CPU resources (looks good for protoDUNE)
 - shared resources from WLCG/OSG give us lots of flexibility here
 - disk resources (needs both contributions and code development)
 - For analysis, collocating disk and CPU within a region helps a lot
 - Our model emphasizes keeping heavily used samples on disk
 - tape resources (FNAL and CERN for now will be come a big issue after 2030)
 - tight controls on data volumes and retention policies for intermediate steps.
 - networking working with ESNET as part of their planning exercise
 - Move to DUNEONE network, away from LHCONE for PD expt traffic.

Development Organization

Computing

Development Scope

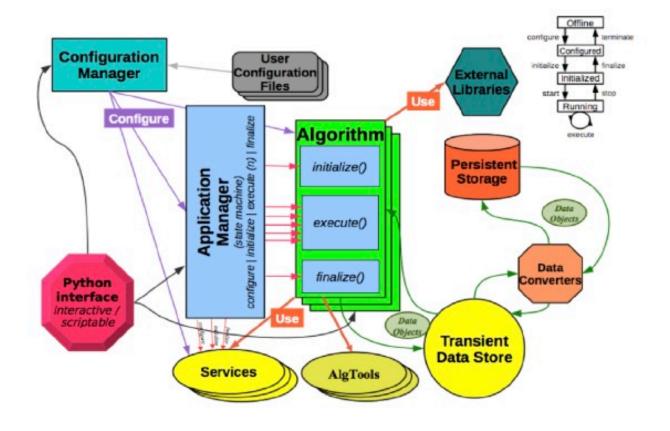
- Use common tools (ESNET, rucio, WLCG ...) where possible
- Detector is new
 - New databases need to be designed for conditions/calibrations
- DUNE events are very big and getting bigger 70 MB (PD) --> 3 GB (FD) → 115 TB/module (Supernova)
 - New framework
 - Memory management is ... interesting ...
 - HPC adaption
- Collaboration is large
 - Support (and train) large # of users
 - Need to monitor and coordinate large # of sites (32 already)
 - support thousands of simultaneous connections to DB and data stores
- Needs to be ready at small scale in 2022 for PD-II, large scale between 2026-2029 for FD/ND

Since March: Framework review

- We asked the HSF to review our framework requirements and got detailed responses
 - Our descriptions of use cases and time scales needs work this helps the CDR
 - HPC use case is interesting
 - Most current frameworks run on HPC but do so in "single node" modes so they do not leverage the machine's capabilities
 - The amount of GPU acceleration is also new and current frameworks have this bolted on to older CPU only scheduling models.
 - MPI work distribution and "event" splitting are completely new
 - Committee likes this but notes it is novel
 - Memory Needs. (6GB event from FD?)
 - This is HIGHLY dependent on actual workflow topologies
 - This could be huge or tiny depending on how we sequence our analysis and how we break events up over processing ranks
 - Don't be constrained to use same framework for reconstruction and analysis

Frameworks review by HSF

Unique DUNE requirements:

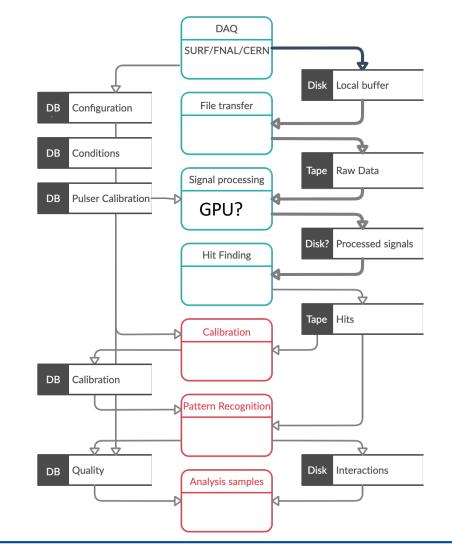

TPC/PD Data are simple on small scales \rightarrow HPC

But 6 GB-100 TB readouts drive memory management requirements:

- Separate persistency/transient
- Precise tracking of provenance so parts can be reassembled
- multi-threading
- coherent processing across multiple architectures/sites

Can existing frameworks be modified to meet requirements? (major work)

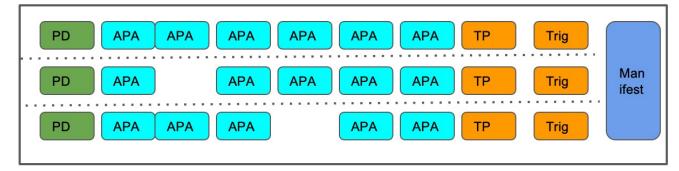
Are reconstruction and analysis frameworks the same? (probably no)

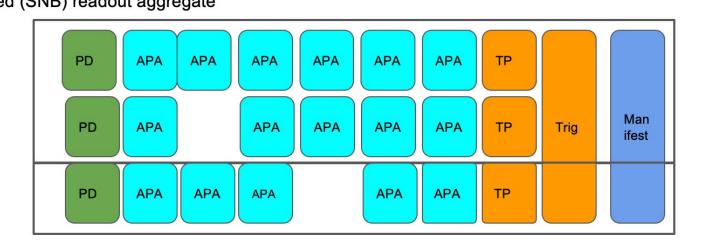

Data processing flow for FD/PD

Signal processing

- Large scale operations on arrays
- HDF5 instead of root structures?
- Output can be zero-suppressed?
- Separate framework

• Hit finding


- If statements and fitting
- Reduces output by x10-100
- Calibration
 - Some calibration samples are very large
- Pattern recognition
 - ML algorithms
- Analysis



Localized readout aggregate (cosmics/beam)

Frameworks and data structure

- PD and FD "events" may be GB scale.
 - Split to 30 MB APA chunks in memory Extended (SNB) readout aggregate
- Supernova are ~100TB scale
 - Need to overlap time segments offline or online
 - May be able to analyze interactions independently without "event" building.

.....

HSF comments on novel requirements

Multi-node Processing

- This is new for HEP. Other event frameworks go through many "small" events and do not have need to break the event over multiple nodes

- We have small number of HUGE events and computational scaling pushes towards multi-node processing especially at HPC centers
- MPI for data/memory and reduction.

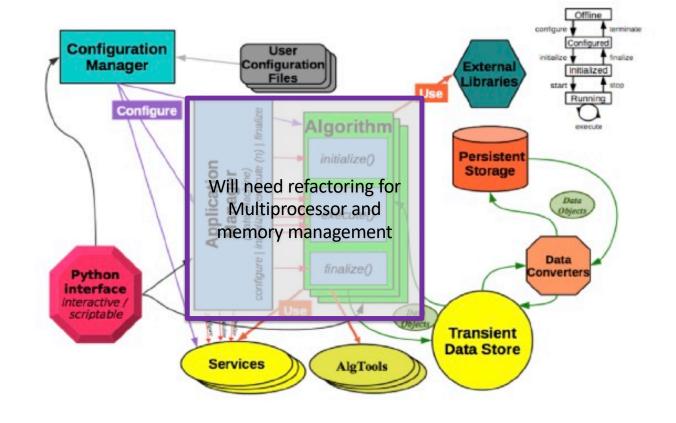
Overlapping processing atoms

- Subsetting the data at the framework level is "novel"
 - Example: splitting by APA or down to interaction candidate level

• Fluidity in data processing hierarchy

- Anything that is not run/subrun/event is new (so time series like data and interactions within drifts are some what problematic from current frameworks)

Development: Frameworks review by HSF


Unique DUNE requirements:

TPC/PD Data are simple on small scales \rightarrow HPC

But 6 GB-100 TB readouts drive memory management requirements:

- Separate persistency/transient
- Precise tracking of provenance so parts can be reassembled
- multi-threading
- coherent processing across multiple architectures/sites

Can existing frameworks be modified to meet requirements? Are reconstruction and analysis frameworks the same? (probably no)

Vertical Drift technology implications for computing

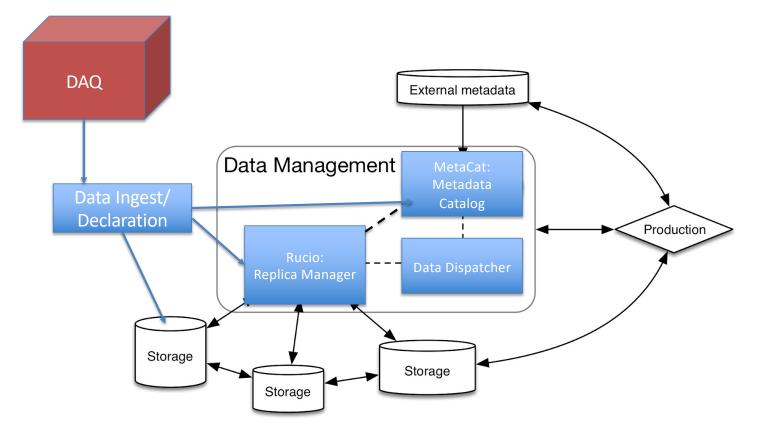
- Similar (or 32% larger for 3D) TPC channel count, smaller PD channel count
- Longer drift \rightarrow more time samples
- Otherwise algorithmically similar to APA technology
- CRP readout already integrated into reconstruction chain.
- For now we are assuming data sizes will be similar to the HD modules.

Near Detector

- More similar to other HEP experiments many detector systems, normal sized events
- About to start large simulation production
- Not using the LarSoft framework yet

Development example: Databases

Now: Need substantial updates for PDUNE II to incorporate conditions/calibrations cleanly


- ✓ Beam database
- ✓ Hardware database for FD
 - Already needed yesterday
 - Going into production now....

2021-2024: ProtoDUNE-II run and analysis

- Data Catalog
 - Developing more efficient MetaCat and Data tracking db's
- Compute systems monitoring
- □ Conditions/Slow controls/Calibrations
- 2024-2027: 2nd iteration to go to full scale for DUNE
 - □ Calibration/Conditions at full scale for ND/FD
 - FD/ND will have many more channels than existing IF DB's were built to support
 - ~400,000 channels/FD module, many more for ND.
 - needs significant effort early on for design
 - will need significant horsepower to serve information to 10,000 cores worldwide.

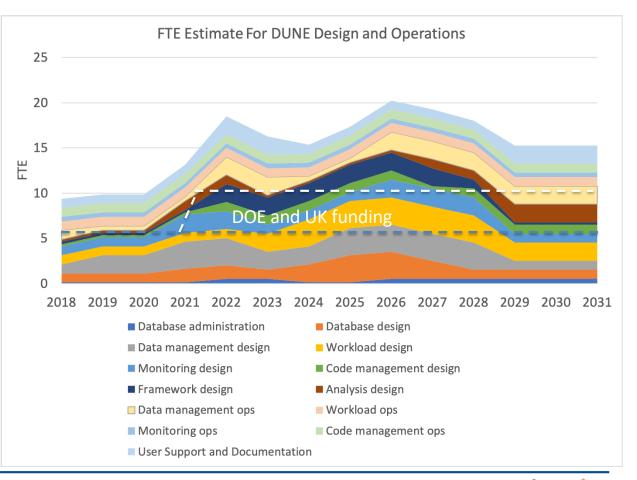
DUNE Data Management System

DUNE Data Management Projects

- Development:
 - Rucio Logical to Physical File mapping for Tape sites (non-deterministic) [James Perry, Edinburgh]
 - MetaCat moving towards deployment. [Igor Mandrichenko, FNAL]
 - Data Dispatcher—rework of SAM project functionality—[Brandon White, FNAL] Start summer 2021
 - Data Ingest Daemon—(Rework of FTS-Light functionality) Start Fall 2021
 - Data Transfer Daemon--(Rework of FTS functionality to declare to Rucio/Metacat) Start Fall 2021
- Operations:

24

- Backloading all data into Rucio-[S. Timm, FNAL, Edinburg] In progress
- CTA testing @ CERN-[Wenlong Yuan, Edinburg] -- In progress
- Rucio daily testing—[S. Timm, FNAL + Oregon State CS students] In progress
- Rucio transfer speed monitoring / Sam-Xrootd monitoring [Oregon State students]
- Deployment of production OKD-based Rucio Server. [B. White, FNAL]


Development: Rough timeline

activity	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Beam	Ops					Ops.												
Cosmics		Ops	Ops	Com.	Com.	Ops.	Ops.				CC 711 03							
FD Commissionni	ng				-			2	Com	missio	ning							
FD Operations										_		Opera	ations					
ND Commissionni	ing									Comn	niss.							
ND Operations												Opera	ations					
Hardware DB											_							
Conditions DB		Desig	n															
Configuration DB																		
MetaCat					Opera	ations												
Dispatcher								Redes	ign	Opera	ations							
Monitoring										12.2								
Rucio																		
Calibration DB																		
Frameworks																		

FTE estimate. Does not include shared facility (storage etc.) costs

- Some effort (mainly operations pastels at top) can be trained collaboration physicists.
- Rest requires experts
- Currently have around 5 FTE experts (FNAL + collab), all in-kind contributions except UK DUNE funded personnel.
- Expert need is greatest for ProtoDUNE 2 and pre-operations in 2024-2028. 5-10 FTE > 50% US

Conclusions

Significant collaboration contributions to hardware and development effort have been identified

Storage contributions are high priority

More expert effort for development is needed for protoDUNE II in 2021-2022 and pre-operations starting in 2024-2027

Title	Platform for editing	Docdb for reference		
DUNE Software Framework Requirements Taskforce Report	<u>DocDB</u> ₽	<u>DocDB</u> &		
Near Detector Data Model	<u>Overleaf</u> ଜ	?		
Data Tracking	<u>GoogleDocs</u> ₽	?		
Metadata Catalog requirements	<u>GoogleDocs</u> &	?		
ESNET report	<u>docdb-20816</u> ₽	<u>docdb-20816</u> ₽		
Database description and definitions	<u>Overleaf</u> &	?		
Database hardware database requirements	<u>Overleaf</u> ଜ	?		
Sites and Centres Model	<u>GoogleDocs</u> ₽	<u>Docdb-22984</u> &		
Computing CDR	<u>Overleaf (R only)</u> & <u>(R/W)</u> &	?		
DAQ/Computing Metadata	<u>GoogleDocs</u> ₽	<u>Docdb 22983</u> &		
MetaCat Documentation	<u>html</u> &	?		
Raw Data Decoder Requirements/Spec	<u>GoogleDocs</u> ଜ	?		

27 9/12/21 Computing