# $\pi^+$ -Ar cross section measurement with 1 GeV test beam on ProtoDUNE

Yinrui Liu<sup>1</sup>, Tingjun Yang<sup>2</sup> Sept.16, 2021 @ Hadron Analysis Meeting



<sup>1</sup>University of Chicago



<sup>2</sup>FNAI



## Contents

- Review definition of slice ID
- Re-selection on Pandora-provided beam slices
- Data/MC difference in shower events



# Thin slice method

#### Slice ID defined by the end Z position



$$\sigma = \frac{M_{\text{Ar}}}{\rho t N_A} \ln \left( \frac{N_{\text{inc}}}{N_{\text{inc}} - N_{\text{int}}} \right)$$

- $oldsymbol{N}_{
  m inc}$  is the number of incident events in the slice
- $N_{\mathrm{int}}$  is the number of events which have interactions in the slice
- $t = t_0/\cos\theta$ , where  $t_0$  is the thickness of slice (10 cm) and  $\cos\theta$  is the angle-correction factor
- $\rho$  is the density of argon
- $M_{\rm Ar}$  is the mass of argon atom
- $N_A$  is the Avogadro constant



# Thin slice method

#### Slice ID defined by the end Z position



$$\sigma = \frac{M_{\text{Ar}}}{\rho t N_A} \ln \left( \frac{N_{\text{inc}}}{N_{\text{inc}} - N_{\text{int}}} \right)$$

- $oldsymbol{N}_{
  m inc}$  is the number of incident events in the slice
- $N_{\mathrm{int}}$  is the number of events which have interactions in the slice
- $t = t_0/\cos\theta$ , where  $t_0$  is the thickness of slice (10 cm) and  $\cos\theta$  is the angle-correction factor
- $\rho$  is the density of argon
- $M_{\rm Ar}$  is the mass of argon atom
- $N_A$  is the Avogadro constant



# Thin slice method

#### Slice ID defined by the track length



$$\sigma = \frac{M_{\text{Ar}}}{\rho t N_A} \ln \left( \frac{N_{\text{inc}}}{N_{\text{inc}} - N_{\text{int}}} \right)$$

- $oldsymbol{N}_{
  m inc}$  is the number of incident events in the slice
- $N_{\mathrm{int}}$  is the number of events which have interactions in the slice
- $t = t_0$ , which is the thickness of slice (10 cm)
- $\rho$  is the density of argon
- $M_{
  m Ar}$  is the mass of argon atom
- $N_A$  is the Avogadro constant

# Definition of slice ID

Dataset: Run 5387, 1 GeV



Slice ID defined by end Z position



Slice ID defined by track length



#### Re-selection on beam slices

- In some events, the beam track given by Pandora is obviously wrong (such as the reconstructed entering position is far away from the beam plug)
- And sometimes, there is a visible real beam in such event.



# A data event display

The light-red track is given by Pandora as the beam slice, while the dark-red one seems to be the real beam.



Data Run 5387 EvtNo.2852 (zoomed)

lar -c evd\_protoDUNE\_data.fcl /pnfs/dune/tape\_backed/dunepro/protodune-sp/full-reconstructed/2021/detector/physics/PDSPProd4/00/00/53/87/np04\_raw\_run005387\_0002\_dl10\_reco1\_13833678\_0\_20201109T221815Z\_reco2\_21291447\_0\_20210619T145042Z.root



# A MC event display

The pink track is given by Pandora as the beam slice, while the dim-green one is the real beam.



MC Run 18804220.10 EvtNo.500 (zoomed)

lar -c evd\_protoDUNE\_refactored.fcl /pnfs/dune/tape\_backed/dunepro/protodune-sp/full-reconstructed/2021/mc/out1/PDSPProd4a/18/80/42/20/PDSPProd4a\_protoDUNE\_sp\_reco\_stage1\_p1GeV\_35ms\_sce\_datadriven\_18804220\_49\_20210415T181816Z.root



#### Re-selection on beam slices

 In each event, Pandora can provide some beam track candidates (mostly only one, sometimes two or more)

| reco file                                                                                             |  |  |  |  |     |    |    | total events | 0 slices | 1 slices | 2 slices | 3 slices |
|-------------------------------------------------------------------------------------------------------|--|--|--|--|-----|----|----|--------------|----------|----------|----------|----------|
| np04_raw_run005387_0002_dl10_reco1_13833678_0_20201109T221815Z_reco2_21291447_0_20210619T145042Z.root |  |  |  |  | 136 | 80 | 55 | 1            | 0        |          |          |          |
| np04_raw_run005387_0006_dl6_reco1_13832072_0_20201109T214811Z_reco2_21291345_0_20210619T145043Z.root  |  |  |  |  | 133 | 96 | 35 | 2            | 0        |          |          |          |
| np04_raw_run005387_0008_dl4_reco1_13832576_0_20201109T215211Z_reco2_21291185_0_20210619T144846Z.root  |  |  |  |  | 133 | 71 | 59 | 2            | 1        |          |          |          |

- We want to resume some real beam tracks from these events with more than one candidates by adding a re-selection.
  - A possible selection: we choose the beam candidate whose start Z position (before SCE correction) is the nearest to 30 cm (smallest abs(z-30))



## Number of data events after each cut

| Number of data events | Original | Re-selected |
|-----------------------|----------|-------------|
| No cut                | 18556    | 18556       |
| Pandora slice cut     | 14216    | 14227       |
| Calo size cut         | 13847    | 13866       |
| Beam quality cut      | 9568     | 9871        |
| APA3 cut              | 7195     | 7475        |
| Michel score cut      | 7030     | 7307        |
| Median dE/dx cut      | 6648     | 6908        |

• With the re-selection, we gain 6908/6648 - 1  $\approx$  3.9% events after full selections in Run 5387.

### Ratio of truth-matched MC events

- I only looked at three MC runs.
- Matched/mis-matched is judged by reco\_beam\_true\_byE\_matched https://wiki.dunescience.org/wiki/PDSPAnalyzer

| Matched/mis-matched | Original | Re-selected |                              |
|---------------------|----------|-------------|------------------------------|
| Run 18804220        | 394/283  | 401/276     | 1.0% more events are matched |
| Run 18815590        | 381/268  | 392/257     | 1.7% more events are matched |
| Run 43491284        | 391/272  | 405/258     | 2.1% more events are matched |



## Data/MC difference in shower-track ratio

- Pandora tags an event either track-like or shower-like.
- We used to require an event to be track-like (Pandora slice cut) before adding other selections
- However, we found there are fewer shower-like events in MC than data
  - In data, shower/track =  $643/14208 \approx 0.0453$
  - In MC, shower/track =  $258/8485 \approx 0.0304$
- So I remove the requirement on tracks, and see how the other selections act on shower/track
  - BeamForcedTrackInfo()
  - allTrack variables



# Number of events left after each cut

| Num. of evt left  | Data (track-only) | MC (track-only) | Data (forced-track) | MC (forced-track) |
|-------------------|-------------------|-----------------|---------------------|-------------------|
| No cut            | 18535             | 18535           | 18535               | 18535             |
| Pandora slice cut | 14208             | 15696           | 14851               | 16208             |
| Calo size cut     | 13847             | 15391           | 14407               | 15833             |
| Beam quality cut  | 9859              | 11192           | 9932                | 11262             |
| APA3 cut          | 7469              | 9110            | 7542                | 9178              |
| Michel score cut  | 7301              | 8941            | 7372                | 9011              |
| Median dE/dx cut  | 6904              | 8577            | 6947                | 8615              |



# Shower/track after each cut

| Shower/track      | Data (forced-track) | MC (forced-track) |
|-------------------|---------------------|-------------------|
| No cut            | 643/14208 ≈ 0.0453  | 258/8485 ≈ 0.0304 |
| Pandora slice cut |                     |                   |
| Calo size cut     | 560/13847 ≈ 0.0404  | 228/8324 ≈ 0.0274 |
| Beam quality cut  | 73/9859 ≈ 0.0074    | 26/6126 ≈ 0.0042  |
| APA3 cut          | 73/7469 ≈ 0.0098    | 26/4993 ≈ 0.0052  |
| Michel score cut  | 72/7300 ≈ 0.0099    | 26/4890 ≈ 0.0053  |
| Median dE/dx cut  | 44/6903 ≈ 0.0064    | 21/4667 ≈ 0.0045  |



# Summary

- We now define slice ID based on track length.
- By adding a re-selection to Pandora-provided beam slices, we can resume
   ~5% beam events.
- The current selections can remove shower-like events to a low level (<1%), so their impact on data/MC can be ignored.

# Back-up



# Selection for $\pi^+$ beams

- Pandora Slice Cut: need Pandora-tagged track rather than shower or empty
- Calo Size Cut: require at least one hit detected by wires in the collection plane
- Beam Quality Cut: cut on beam entrance location and beam angle (after SCEcorrection)
- APA3 Cut: only use tracks in the first TPC (SCE-corrected end Z < 220 cm)</li>
- Michel Score Cut: veto muon tracks according to Michel score at end vertex
- Median dEdx Cut: set upper limit on median dE/dx to veto proton background

