An overview of SNOLAB: Facilities and Science

Nigel Smith Director, SNOLAB

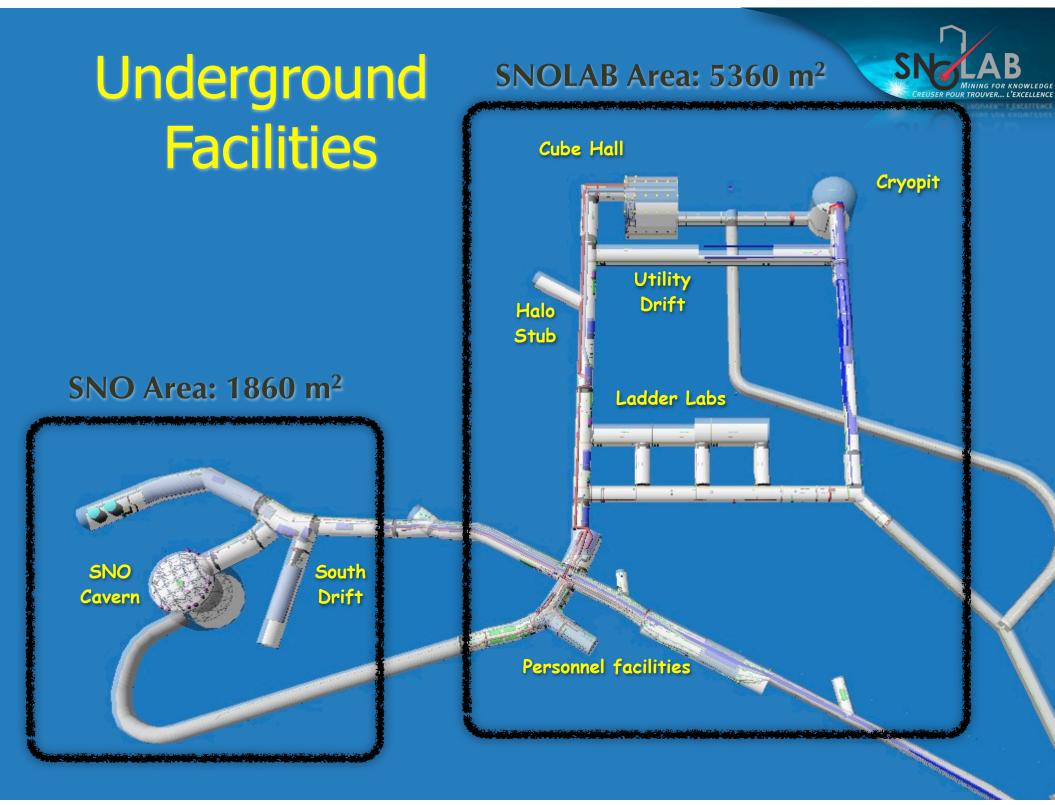
The SNOLAB Facility

- Operated in the Creighton nickel mine, near Sudbury, Ontario, hosted by Vale.
- Developed from the existing SNO detector
- Underground campus at 6800' level, 0.27µ/m²/day
- Entire lab at class 2000, or better, to mitigate against background contamination of experiments.
- Focus on dark matter, double beta decay, solar & SN neutrino experiments requiring depth and cleanliness.
 - Also provide space for prototyping of future experiments.
- Large scale expt's (ktonne)
- Goal has been to progressively create a significant amount of space for an active programme as early as possible.

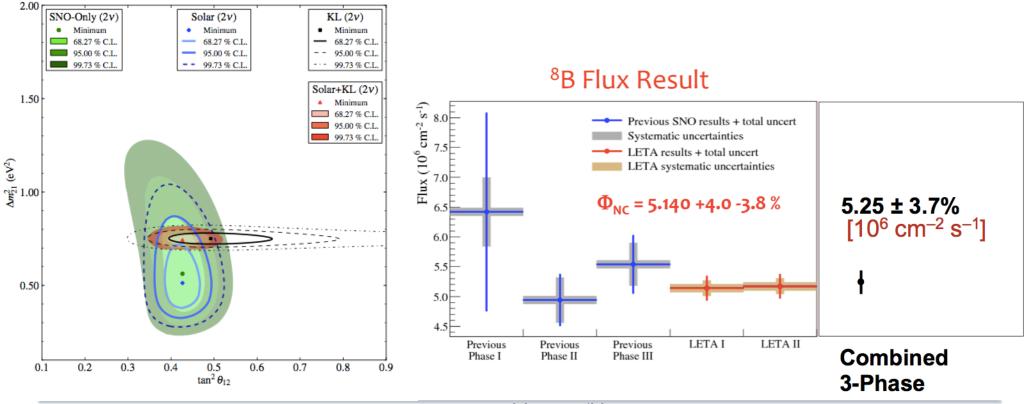
SNOLAB Funding Status

- \$65M construction cost, \$7-8M operations cost
 - ~60 operational support staff
- Development funds primarily through CFI as part of a competition to develop international facilities within Canada
- Additional construction funding from Federal: NSERC, and Provincial: OIT, FedNOR, NOHF
- Operational funding through NSERC, CFI, MRI (Ontario)
 - Currently secured to 2013
 - New federal programme created to support five Major Science Infrastructures
 - \$180M over five years in total, from April 2012
 - Provincial support from 2013 under active discussion
 - Vale fully supportive: >20 year plan for Creighton

SNOLAB Current Status


- Surface Facility (3100 m²)
 - Operational from 2005 Provides offices, conference room, dry, warehousing, IT servers, clean-room labs, detector construction labs, chemical + assay lab
 - 440m2 class 1000 clean room for expt setup
- Underground Construction (5360 m²)
 - Two additional large cavities (Cube Hall, Cryopit) and support drifts
 - Additional linear drifts for smaller scale experiments
 - Materials handling and cleaning areas; tram transportation
 - Personnel areas: refuge/galley, change areas/showers, offices, meeting room
 - Excavation started 2007, complete June 2008
 - Integration of Phase-I 2009/10
 - Integration of Phase-II 2011
 - Air handling/conditioning complete
 - Power delivery completed
 - Service delivery as required
 - Life-safety systems throughout

Area	Dimensions	Area	Volume	
SNO Cavern	24m (dia) x 30m(h)	250m ²	9,400 m ³	
Ladder Labs	32m(l)x6m(w)x5.5m(h)	190m ²	960 m ³	
	23m(l)x7.5m(w)x7.6m(h)	170m ²	1,100 m ³	
Cube Hall	18.3m(l)x15m(w) x 19.7m(h)	280m ²	5,600 m ³	
Cryopit	15m(dia) x 19.7m(h)	180m ²	3,900 m ³	



SNOLAB Programme

Experiment	Solar nu	OnuBB	Dark Matter	SuperNovae	Geo nu	Other	Space allocated	Status
SNO+	\checkmark	\checkmark		\checkmark	\checkmark		SNO Cavern	Underway
PICASSO-III			\checkmark				Ladders Labs	Underway
DEAP-1			\checkmark				J'-Drift	Underway
DEAP-3600			\checkmark				Cube Hall	Underway
MiniCLEAN			\checkmark				Cube Hall	Underway
HALO				\checkmark			Halo Stub	Underway
PUPS						Seismicity	Various	Completed
SuperCDMS			\checkmark				Ladder Labs	Request
EXO-gas		\checkmark					Ladder Labs	Request
COUPP			\checkmark				Ladder Labs	Underway
DarkSide			\checkmark				Ladder Labs	Request
COBRA		\checkmark					Ladder Labs	Request

Final SNO Results

- Detected $v_x ES$, $v_e CC$ and $v_x NC$ interactions in heavy water
- NC neutrons detected three ways: D, Cl, NCD
- Final combined analysis of all three phases arXiv:1109.0763
 - includes pulse shape particle ID in NCD (alpha / n rejection)
 - improved ⁸B and v_e survival probability (by 20%)

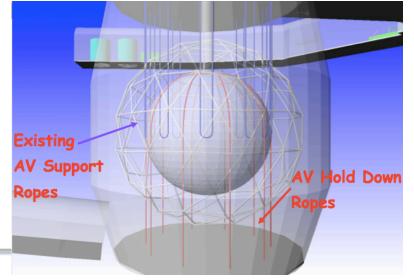
 $\times 10^{-4}$

ISER POUR TROUVER ... I'EXCELLENCE

Current programme: 0vββ at SNOLAB

- SNO+: $^{150}Nd \rightarrow ^{150}Sm + e^{-}+e^{-}$
- Uses existing SNO detector. Heavy water replaced by scintillator loaded with ¹⁵⁰Nd. Modest resolution compensated by high statistical accuracy.
 - Requires engineering for acrylic vessel hold down and purification plant. Technologies already developed.
 - SNO Cavity: repairs to cavity liner and modification of detector support to hold down the Acrylic Vessel for liquid scintillator.
 - SNO Utility Room: Development of liquid scintillator purification system.
 - Capital funding turn on fall 2010.
- EXO-gas : ${}^{136}Xe \rightarrow {}^{136}Ba^{++} + e^{-} + e^{-}$
 - Ultimate detector aim = large volume Xe Gas TPC
 - Developing technique to tag Ba daughter. Electron tracking capability.

Current programme: Natural neutrino sources


- SNO+ :
 - Will also measure
 - solar neutrino pep line (low E-threshold)
 - geo-neutrinos (study of fission processes in crust/mantle)
 - supernovae bursts (as part of SNEWS)
 - reactor neutrinos (integrated flux from Canadian reactors)
- HALO: Dedicated Supernova watch experiment
 - Charged/neutral current interactions in lead
 - Re-use of detectors (NCDs) and material (Pb) from other systems
 - DAQ refurbishment complete, NCD installation complete, partial ops underway, full ops by end 2011
 - Will form part of SNEWS array

SNO+ Developments

- Clean and lap AV interior
 - Cleaning completed; lapping process designed
- Hold-down rope net procured, now at site
 - Anchor points installed, new liner sprayed
- Scintillator process plant
 - Design completed; large vessels procured; EH&S (fire) under review

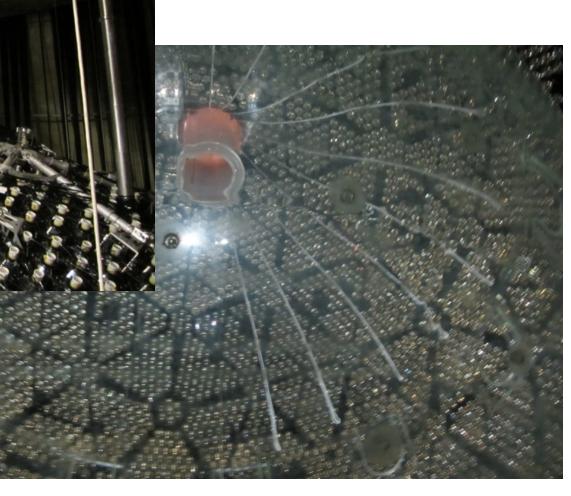
DURA Workshop - Fermilab

- Scintillator to be bought at appropriate time (for 2013)
- Upgrade electronics for high rate, lower energy
 - Completed
- Aim for water-fill tests mid-2012
 - Scintillator fill early 2013

Protection umbrella constructed underneath SNO+ AV and PSUP for floor repair and anchor point installation

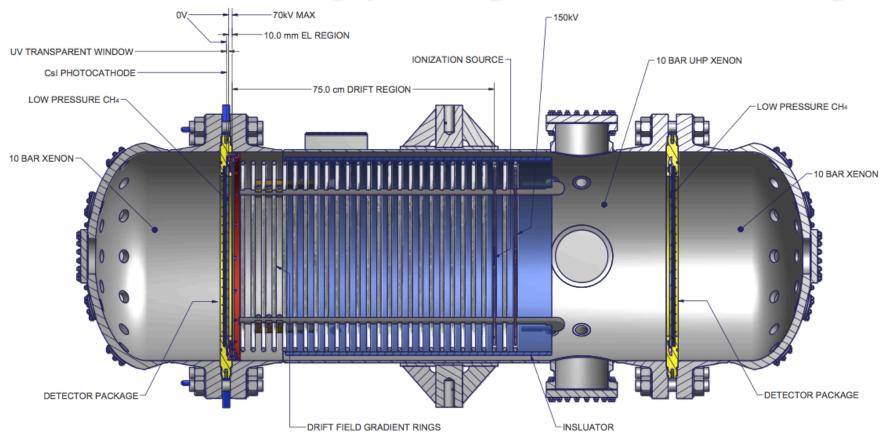
Process system design advanced, inc. EH&S Cavity work completed - construction of 'umbrella', hold-down ropes, anchor points, AV cleaning completed, lapping underway, ...

Excavating a larger space in the SNO+ Utility room to accommodate the liquid scintillator process systems.


SNO+ Developments

Completion of anchor point installation, maintaining clean room, and floor liner respray

SNO+ Developments


Installation of hold-down rope net, and hold-down ropes

EXO-Gas

- ¹³⁶Ba laser-tagging tests completed at SNOLAB
- Development of electroluminescence test chamber underway at Carleton before deployment to SNOLAB
 - Extract Ba ion from high pressure region into laser fluorescence region

Current programme: Dark Matter at SNOLAB

Noble Liquids: DEAP-I, MiniCLEAN, & DEAP-3600

- Single Phase Liquid Argon uses pulse shape discrimination.
- Prototype DEAP-I operational in SNOLAB now, relocated to 'J' Drift. Successful demonstration of PSD and test bench for DEAP/CLEAN design/operations and background assessment.
- Construction for DEAP-3600 and MiniCLEAN underway. Full DEAP-3600 capital funding granted
- Will measure Spin Independent cross-section, reach anticipated 10⁻⁴⁶ cm²

Superheated Liquid / Bubble chamber: PICASSO, COUPP

- Superheated droplet detectors and bubble chambers. Insensitive to MIPS radioactive background at operating temperature, threshold devices
- PICASSO currently operational, reworking of electronics and backgrounds, demonstration of alpha rejection and test bench for scale-up of detector volumes.
- COUPP-4kg currently operational in 'J' Drift, 60kg Spring this year.
- Will measure Spin Dependent cross-section primarily, COUPP has SI sensitivity

Solid State: SuperCDMS

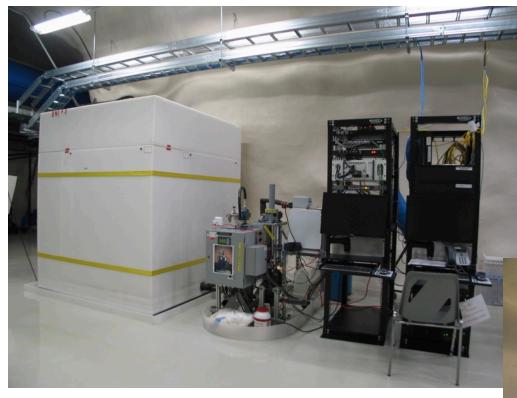
- State of the art Ge crystals with ionisation and phonon readout.
- Currently operational in Soudan. Next phase will benefit from SNOLAB depth to reach desired sensitivity. Test facility in Ladder Labs under development, expect installation later this year.
- Mostly sensitive to Spin Independent cross-section.

Cube Hall - DEAP/miniCLEAN

MiniCLEAN / DEAP-3600

DEAP-3600 20" test-vessel machining at Alberta: bonding test. Main vessel panels bonding and formed at RPT, CO

> MiniCLEAN inner vessel final machining; PMT cassettes under construction

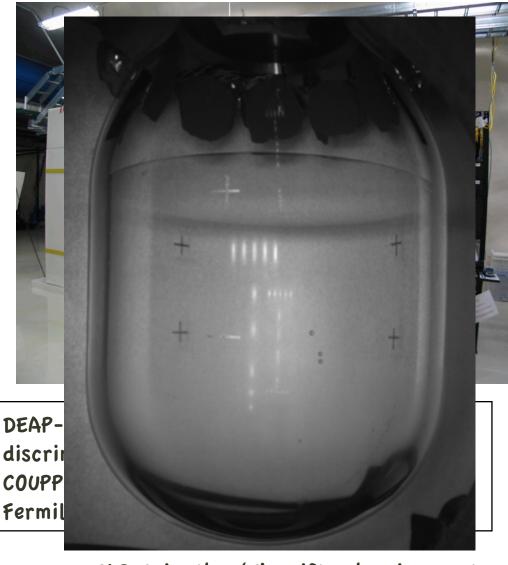


electronics

TPCS Boxes

and target

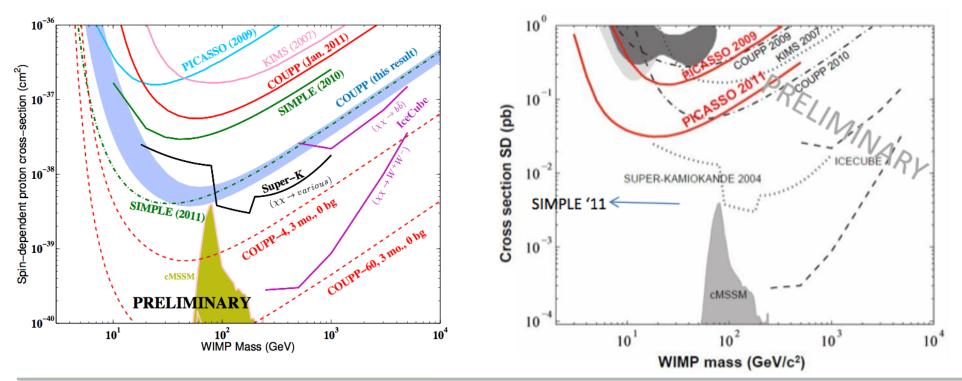
'J'-Drift: R&D + rapid deployment

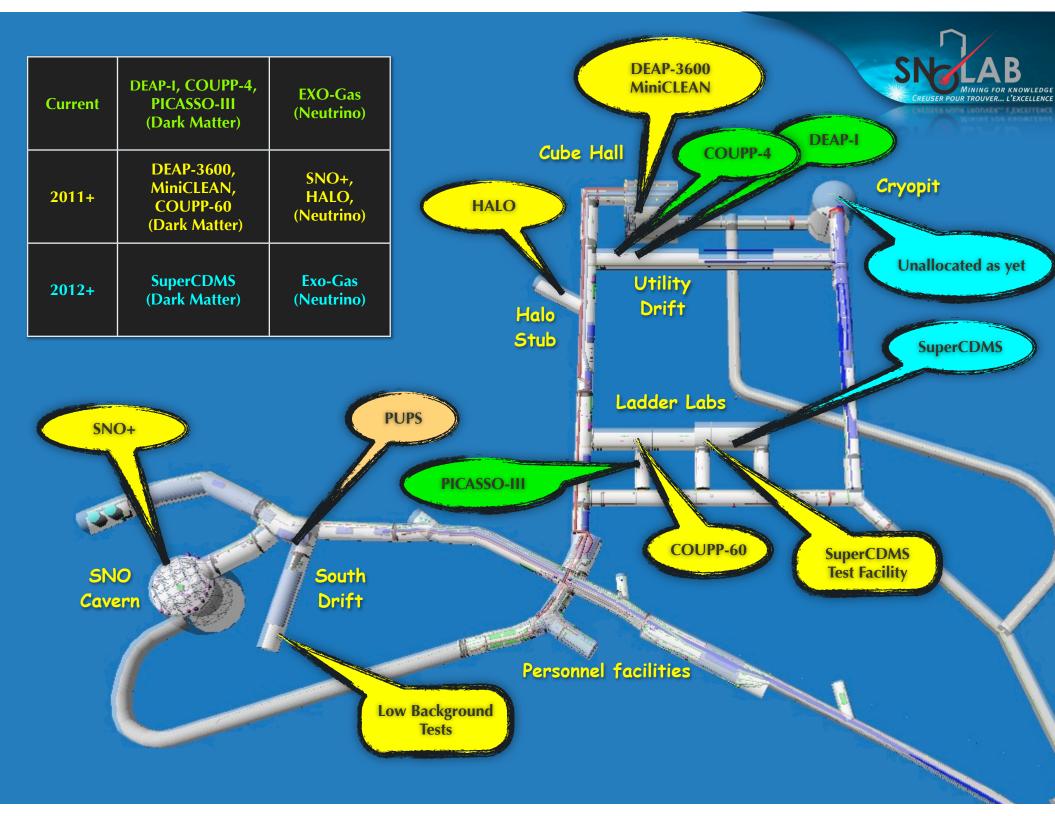

COUPP-4 bubble chamber, showing water tank shielding stack, pressure carts, DAQ racks

DEAP-I operational again, background and discrimination tests underway COUPP-4 deployed during summer 2010 from Fermilab - background limited

> DEAP-I in the 'J'-Drift, showing water cube shielding and purifier stack

'J'-Drift: R&D + rapid deployment


DEAP-I in the 'J'-Drift, showing water cube shielding and purifier stack COUPP-4 bubble chamber, showing water tank shielding stack, pressure carts, DAQ racks



Recent Results

- World-leading spin-dependent (on the proton) limits set
- New result from SIMPLE: reanalysis of existing data

