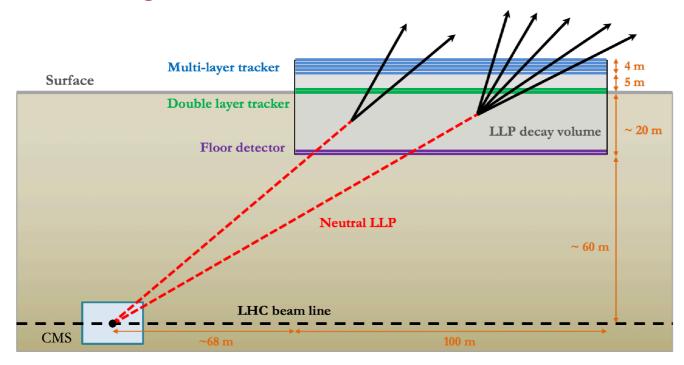
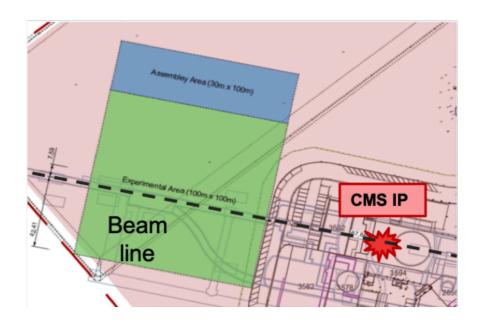


Status and goals

John Paul Chou Rutgers University

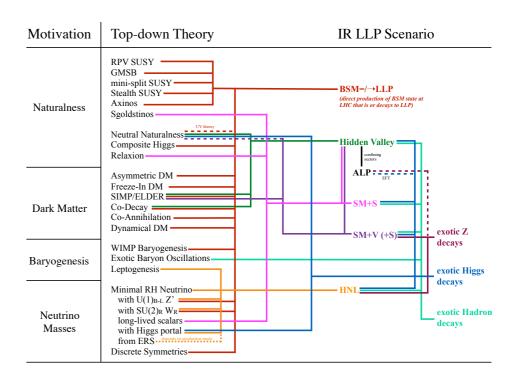

Friday, September 17, 2021



NTRODUCTION

- MATHUSLA is a dedicated detector for long-lived particles
 - Designed to have applicability across a broad range of potential final states
 - Conceptually simple: build a big empty box with trackers on CERNowned land near CMS
 - LLPs that decay inside will be reconstructed as displaced vertices
 - Backgrounds can be ~O(1) because 80+ m rock shielding suppresses IP backgrounds and 4D tracking from ~ns timing are distinct criteria for signal identification

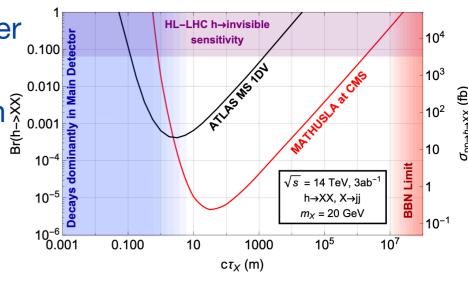
MATHUSLA COLLABORATION

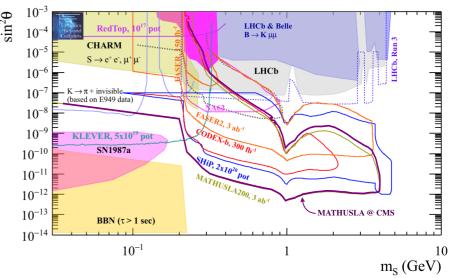

- International collaboration including members & institutions from
 - US, Canada, Chile, Bolivia, Mexico, Italy, Switzerland, ...
 - TDR in progress, aim publish early 2022.
 - Begin MATHUSLA operation with HL-LHC!
- Physics justification detailed in ~200 page report [1806.07396]

A Letter of Intent for MATHUSLA: a dedicated displaced vertex detector above ATLAS or CMS

Cristiano Alpigiani,^a Austin Ball,^o Liron Barak,^c James Beacham,^{ah} Yan Benhammo,^c Tingting Cao,^c Paolo Camarri,^{f,g} Roberto Cardarelli,^f Mario Rodríguez-Cahuantzi,^h John Paul Chou,^d David Curtin,^b Miriam Diamond,^e Giuseppe Di Sciascio,^f Marco Drewes,^x Sarah C. Eno,^u Erez Etzion,^c Rouven Essig,^q Jared Evans,^v Oliver Fischer,^w Stefano Giagu,^k Brandon Gomes,^d Andy Haas,^l Yuekun Heng,^z Giuseppe laselli,^{aa} Ken Johns,^m Muge Karagoz,^u Luke Kasper,^d Audrey Kvam,^a Dragoslav Lazic,^{ae} Liang Li,^{af} Barbara Liberti,^f Zhen Liu,^y Henry Lubatti,^a Giovanni Marsella,ⁿ Matthew McCullough,^o David McKeen,^p Patrick Meade,^q Gilad Mizrachi,^c David Morrissey,^p Meny Raviv Moshe,^c Karen Salomé Caballero-Mora,^j Piter A. Paye Mamani,^{ab} Antonio Policicchio,^k Mason Proffitt,^a Marina Reggiani-Guzzo,^{ad} Joe Rothberg,^a Rinaldo Santonico,^{f,g} Marco Schioppa,^{ag} Jessie Shelton,^t Brian Shuve,^s Martin A. Subieta Vasquez,^{ab} Daniel Stolarski,^r Albert de Roeck,^o Arturo Fernández Téllez,^h Guillermo Tejeda Muñoz,^h Mario Iván Martínez Hernández,^h Yiftah Silver,^c Steffie Ann Thayil,^d Emma Torro,^a Yuhsin Tsai,^u Juan Carlos Arteaga-Velázquez,ⁱ Gordon Watts,^a Charles Young,^e Jose Zurita.^{w,ac}

1811.00927 LHCC-I-031 Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case


1806.07396



DESIGN PRINCIPLES

- In the long lifetime regime > 100m, MATHUSLA has roughly same chance of "catching" an LLP decay in its decay volume as the main detectors
 - Greater depth of decay volume compensates for smaller solid angle coverage
 - For LLP searches, MATHUSLA's greater sensitivity than ATLAS/CMS is due to
 - near-zero backgrounds
 - no trigger limitations
- Therefore, MATHUSLA will beat the main detectors for LLP signals where main detector searches are significantly impeded by background and trigger considerations (up to 1000x better reach)
- Targets (in order of priority)
 - Hadronically decaying LLPs from few GeV to TeV
 - LLPs with mass < few GeV (any decay mode)
 - Cosmic Ray Physics

MATHUSLA status and goals – J^{PC} – Rutgers University – Friday, September 17th, 2021

 Test stand operated above ATLAS in 2018 — combination of plastic scintillator and RPCs

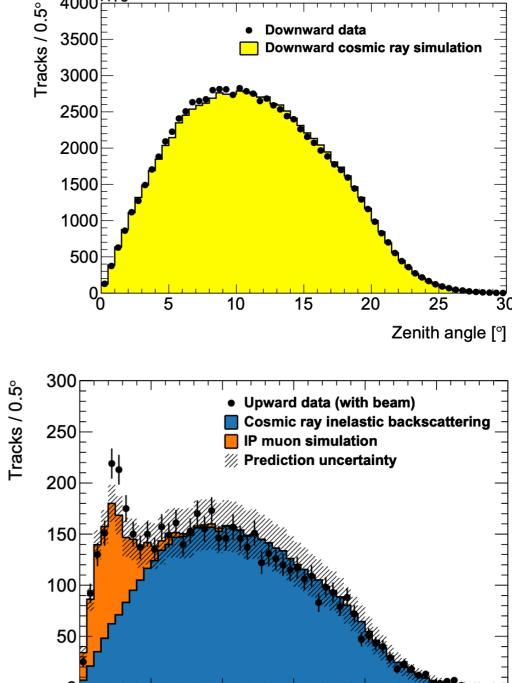
9.5 ns

13.0 ns

6.4 ns

1.6 ns

-0.4 ns


-4.8 ns

-3.6 ns

-9.5 ns

 Both downward and upward rates/ angular distributions well predicted by simulation O(~10%)

TEST STAND RESULTS

15

5

10

20

[NIM A (2020) 164661]

Downward data

Downward cosmic ray simulation

4000×10³

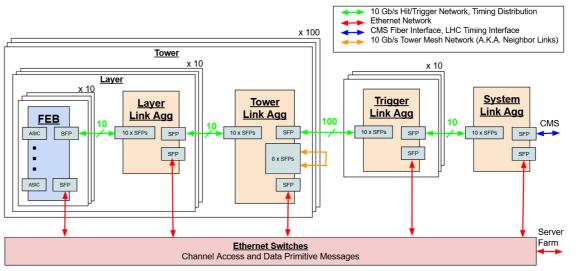
3500

3000

Zenith angle [°]

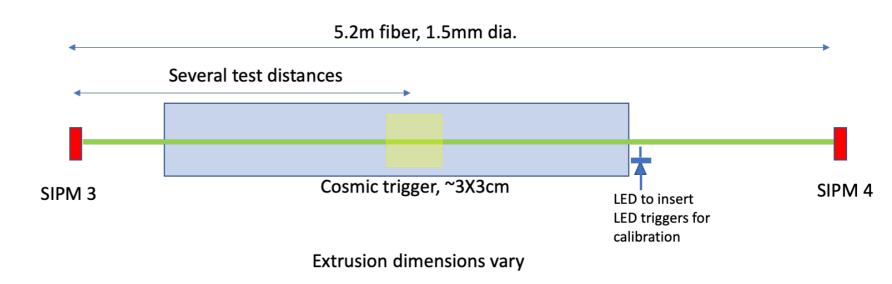
25

ONGOING DEVELOPMENTS



- Collaboration is engaged in R&D for basic hardware/engineering of detector:
 - extruded scintillators, fibers, SiPMs, trigger & DAQ design
 - Simulation studies (LLP + Backgrounds)
- Implementing on custom tracking algorithms for MATHUSLA's unique environment to achieve high LLP reconstruction efficiency for low-multiplicity LLP final states
 - Low track multiplicity final states require careful optimization of detector geometry, tracking algorithm design, etc.
 - Backgrounds from IP muons and cosmic backscatter (e.g. neutral kaons) can create induce reconstructable vertices in the detector
- Cosmic Ray Studies
 - CR physics case white paper coming out this year 2021

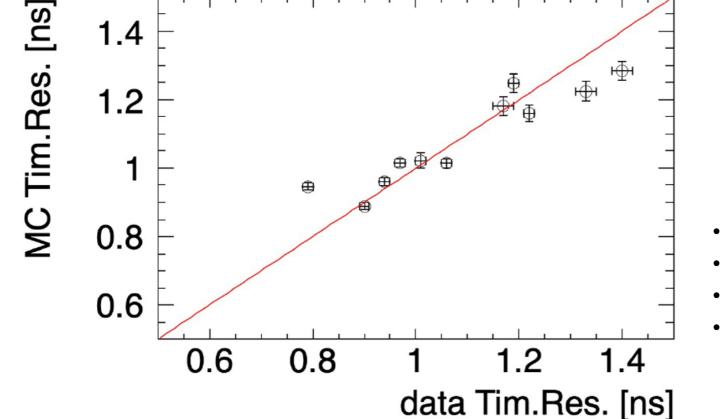
DAQ DESIGN

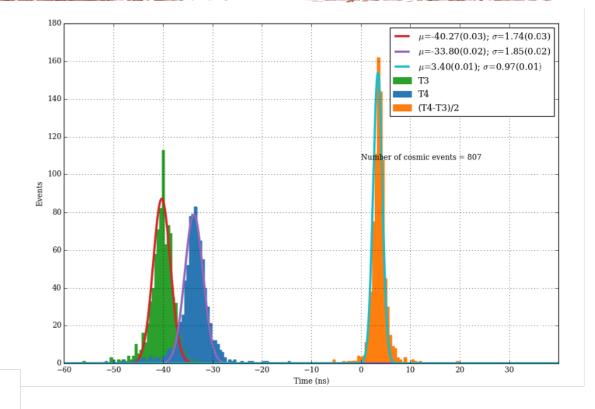

- DAQ
 - Modular design of the Front End Boards and link aggregation boards All hits stored in buffer storage Data rate is well within COTS server
- Trigger
 - Tower aggregation module triggers on upward going tracks within 3 x 3 tower volumes
 - Selects data from buffer for permanent storage
- Trigger to CMS
 - Upward-going vertex forms trigger to CMS
 - MATHUSLA trigger latency estimates appear compatible with CMS L1 latency budget

SCINTILLATOR TIMING AND TESTING

Cosmic setup: 2 small cosmic trigger counters define cosmic ray, light is measured at each end of fiber by SIPMs. Various algorithms to determine time resolution of difference.

- Target timing resolution is ~1 ns
 - Use difference in arrival time between separate measurements at two ends of extruded scintillator
 - Critical feature of the detector design
 - Separates downwards from upwards going tracks
 - Reject low beta particles from neutrino QIS
 - 4D tracking and vertexing reduces fakes/combinatorics

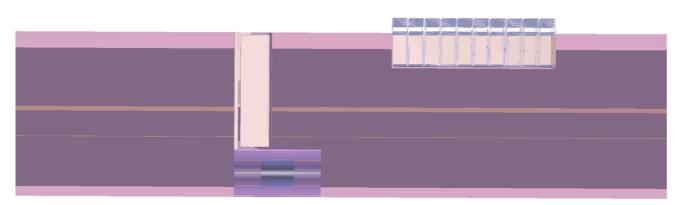

SCINTILLATOR TIMING AND TESTING


- Use Geant to study extrusion and fiber choice to identify critical parameters
 - Goal of <1ns timing is achievable

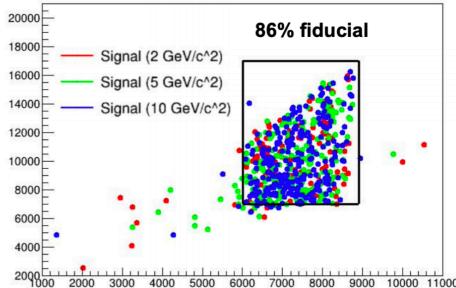
DT result for cosmic run.

- 2X5 cm extrusion cross section
- 5m fiber, BCF92, 1.5mm diameter
- 1pe constant threshold

- Different extrusion thickness
- Different fiber diameters
- Different fiber lengths
- Different fiber vendors

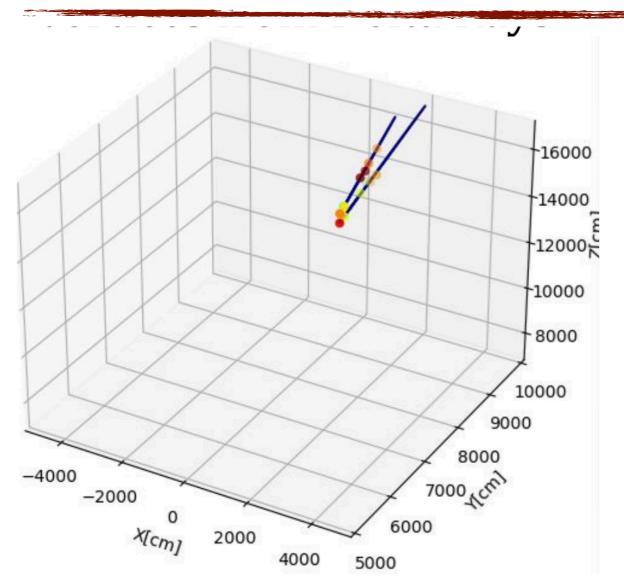


MATHUSLA status and goals – J^{PC} – Rutgers University – Friday, September 17th, 2021


SIMULATION OF BACKGROUNDS

- Use Geant to model particle interactions in matter
- Backgrounds under study:
 - Upwards going muons from collisions (Pythia8)
 - Backscatter (to upwards going V⁰) from downwards going cosmic rays (Parma)
 - Neutrino interactions (Genie3)
- Analysis software uses Kalman Filtering to reconstruct tracks and form 4D vertices

- Cavern, access shaft, CMS, rock, and detector are all modeled
 - Rock is from a geological survey (same as for test stand)


Signal Vertex Location

IP MUON BACKGROUNDS

- We expect ~10¹¹ muons from W events over lifetime of HL-LHC
 - ~10⁹ will reach MATHUSLA
- These muons can create
 vertices in a few different ways
 - Delta-rays
 - Induce EM Showers
 - 5-body decay in flight
- Backgrounds are suppressible with a high-coverage floor veto
 + topological constraints on the vertices

- MATHUSLA has extensive reach and versatility to probe the LLP landscape
 - Significant progress is being achieved on multiple fronts: simulation of rare backgrounds, DAQ design, scintillator/fiber/ SiPM properties, cosmic ray physics case
 - New member contributions always welcome!
- Hope to finish TDR by early 2022, followed by prototype module and full detector for HL-LHC