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- MATHUSLA is a dedicated detector for long-lived parti
+ Designed to have applicability across a broad range of potential final
states
+ Conceptually simple: build a big empty box with trackers on CERN-
owned land near CMS

- LLPs that decay inside will be reconstructed as displaced vertices

- Backgrounds can be ~O(1) because 80+ m rock shielding suppresses IP
backgrounds and 4D tracking from ~ns timing are distinct criteria for

signal identification
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MATHUSLA COLLABORATION

* International collaboration including members & institutions
from
US, Canada, Chile, Bolivia, Mexico, ltaly, Switzerland, ...
* TDR in progress, aim publish early 2022.
- Begin MATHUSLA operation with HL-LHC!

« Physics justification detailed in ~200 page report [1806.07396]

Long-Lived Particles at the Energy Frontier:
The MATHUSLA Physics Case 1806.07396

A Letter of Intent for MATHUSLA: a dedicated 1811.00927
displaced vertex detector above ATLAS or CMS
L H C C - I - O 3 1 Motivation | Top-down Theory IR LLP Scenario
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DESIGN PRINCIPLES
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* In the long lifetime regime > 100m, MATHUSLA
has roughly same chance of “catching” an LLP
decay in its decay volume as the main detectors

- Greater depth of decay volume compensates for smaller
solid angle coverage
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 For LLP searches, MATHUSLA’s greater sensitivity than% .|
ATLAS/CMS is due to &

* near-zero backgrounds
* no trigger limitations

« Therefore, MATHUSLA will beat the main
detectors for LLP signals where main detector
searches are significantly impeded by background =
and trigger considerations (up to 1000x better
reach)
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 Targets (in order of priority)
- Hadronically decaying LLPs from few GeV to TeV o S 3
- LLPs with mass < few GeV (any decay mode)
- Cosmic Ray Physics
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TEST STAND RESULTS

 Test stand operated above ATLAS

In 2018 — combination of plastic
scintillator and RPCs
- Both downward and upward rates/

angular distributions well predicted by
simulation O(~10%)
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ONGOING DEVELOPMENTS
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+ Collaboration is engaged in R&D for basic hardware/engineering of
detector:

- extruded scintillators, fibers, SIPMs, trigger & DAQ design
« Simulation studies (LLP + Backgrounds)

 Implementing on custom tracking algorithms for MATHUSLA'’s
unigue environment to achieve high LLP reconstruction efficiency for
low-multiplicity LLP final states

» Low track multiplicity final states require careful optimization of
detector geometry, tracking algorithm design, etc.

- Backgrounds from IP muons and cosmic backscatter (e.g. neutral
kaons) can create induce reconstructable vertices in the detector

« Cosmic Ray Studies
* CR physics case white paper coming out this year 2021
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DAQ DESIGN

- DAQ

- Modular design of the Front End Boards and link aggregation boards
All hits stored in buffer storage Data rate is well within COTS server

 Trigger

« Tower aggregation module triggers on upward going tracks within 3 x 3 tower
volumes

« Selects data from buffer for permanent storage

» Trigger to CMS

- Upward-going vertex forms trigger to CMS

- MATHUSLA trigger latency estimates appear compatible with CMS L1 latency
budget

-<«—» 10 Gb/s Hit/Trigger Network, Timing Distribution
<«—» Ethernet Network
x 100 <«—» CMS Fiber Interface, LHC Timing Interface
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SCINTILLATOR TIMING AND TESTING

=

Cosmic setup: 2 small cosmic trigger counters define cosmic ray, light is measured at each
end of fiber by SIPMs. Various algorithms to determine time resolution of difference.

5.2m fiber, 1.5mm dia.

Several test distances

SIPM 3 Cosmic trigger, ~3X3cm LED to insert SIPM 4

LED triggers for
calibration

Extrusion dimensions vary

» Target timing resolution is ~1 ns

- Use difference in arrival time between separate measurements at
two ends of extruded scintillator
- Critical feature of the detector design
« Separates downwards from upwards going tracks
- Reject low beta particles from neutrino QIS
4D tracking and vertexing reduces fakes/combinatorics
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SCINTILLATOR TIMING AND TESTING
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SIMULATION OF BACKGROUNDS

« Use Geant to model particle . Cavern, access shaft, CMS,
interactions in matter rock, and detector are all

» Backgrounds under study: modelea |
, * Rock is from a geological
* Upwards going muons from survey (same as for test stand)
collisions (Pythia8) s ———
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- Backscatter (to upwards
going V9) from downwards
going cosmic rays (Parma)

6000

« Neutrino interactions (Genie3) Signal Vertex Location

» Analysis software uses = S
Kalman Filtering to o e sl
reconstruct tracks and form -
4D vertices
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IP MUON BACKGROUNDS

* We expect ~101" muons from

| W events over lifetime of HL-
// 16000 LHC

1714000

: f « ~10° will reach MATHUSLA

4§ v
12000

%« These muons can create

™™ vertices in a few different ways
* Delta-rays
 Induce EM Showers
» 5-body decay In flight

- Backgrounds are suppressible
with a high-coverage floor veto

+ topological constraints on
the vertices
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CONCLUSIONS

MATHUSLA has extensive reach and versatlllty to probe the
LLP landscape

» Significant progress is being achieved on multiple fronts:
simulation of rare backgrounds, DAQ design, scintillator/fiber/
SiPM properties, cosmic ray physics case

* New member contributions always welcome!

» Hope to finish TDR by early 2022, followed by prototype
module and full detector for HL-LHC
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