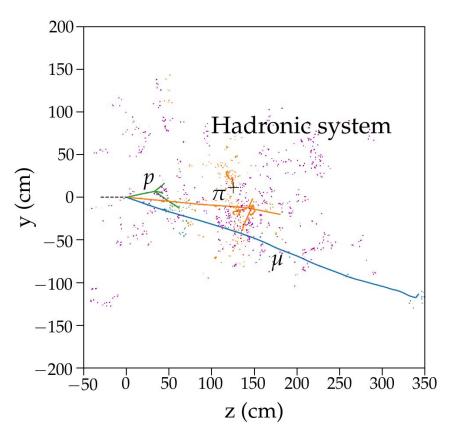
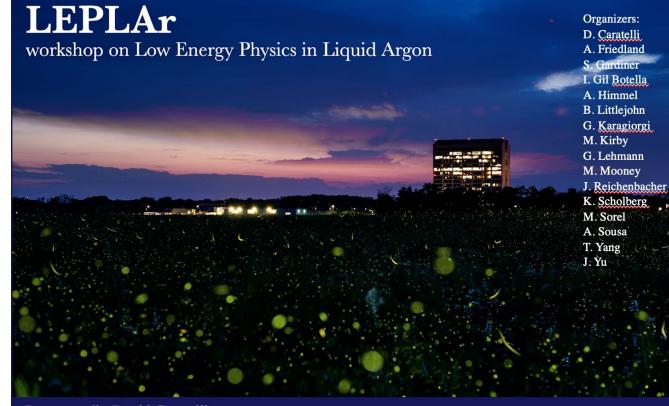
Low-Energy Physics in LArTPCs (LEPLAr): A Snowmass Whitepaper

The LEPLAr Interest Group


What is LEPLAr? What do we mean?

- Large LArTPCs have so far done an amazing job building physics results out of bright light flashes, tracks, and showers!



What is LEPLAr? What do we mean?

- As a field, we have focused less on considering neutrino LArTPCs at low-energy / low-length scales
- In LArTPCs, there are mm-scale, MeVand sub-MeV scale light/charge features that <u>we can see</u>, and that hold physics!
- LEPLAr refers to these low-energy signatures: what physics do they hold, how do we simulate them and reconstruct them, and how do we build detectors to make sure we can see them?

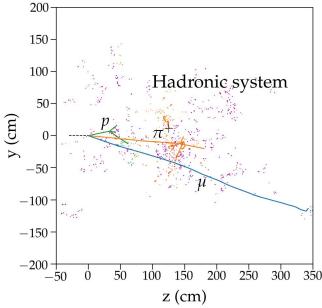
November 30th - December 3rd 2020 https://indico.fnal.gov/event/XXXXX/

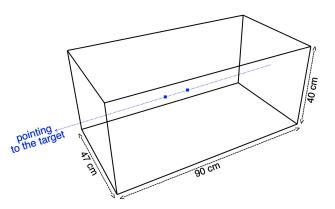
Workshop was DUNE-oriented but had also non-DUNE participation

Poster credit: David <u>Caratelli</u> Photo: Steve <u>Krave</u>

Purpose: coordinate DUNE LE activity spread over multiple working groups

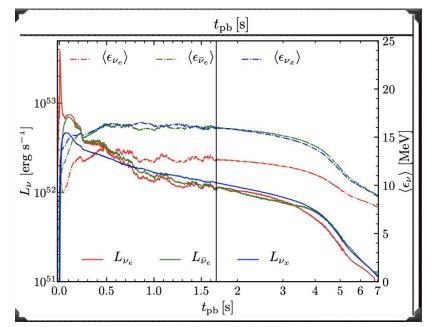
Organization


- Whitepaper is based around the LEPLAr, held virtually in December 2020: https://indico.fnal.gov/event/46641/


- Section 1: Introduction
- Section 2: Physics Enabled by LEPLAr Signals
- Section 3: Modelling Required for LEPLAr Signals
- Section 4: Relevant Detector Features and R&D
- Section 5: Reconstructing LEPLAr Signals
- Section 6: Triggering and Computing Considerations
- Section 7: Connections and Summary of Needs

Section 2: Physics Enabled

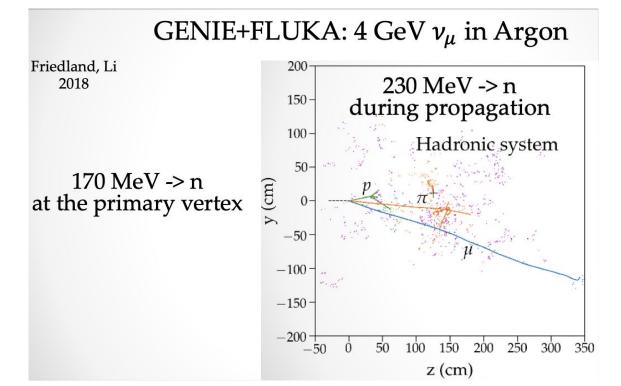
- Neutrino Oscillation Physics:
 - For a GeV+ LBNF neutrino beam, lots of energy will go towards the hadronic system; much of this will be blips.
- BSM Physics:
 - Some BSM physics only exhibits itself as blips (mCP, upscatters)
 - Blips can enable PID, which aids BSM (pi/mu; sign separation)
- Supernova and Solar Neutrinos, of course:
 - 1-50 MeV-scale neutrinos largely make MeV-scale signatures



Select physics highlights I

DUNE's ability to measure SNB nue's gives it *unique physics reach*.

SuperK/HyperK will have more SNB neutrino interactions. However, <u>oscillation effects</u> <u>may not be visible in the nuebar channel</u>, because the starting spectra are very similar.



3D simulation from Bollig *et al*, ApJ 2021

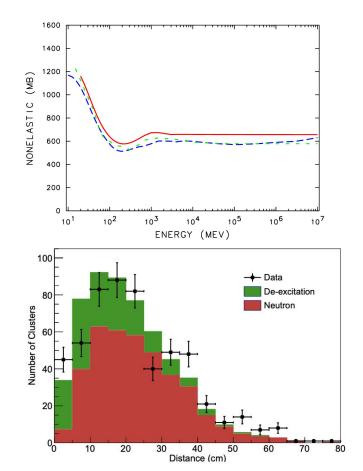
Select physics highlights II

In GeV events, there are both primary and secondary neutrons and a lot of their energy goes into a spray of small charges.

 Recovering their charges can improve energy resolution by ~25%

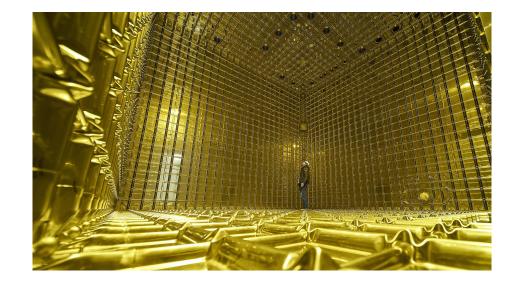
Select physics highlights III

• BSM in LAr: Blips are a valuable handle!

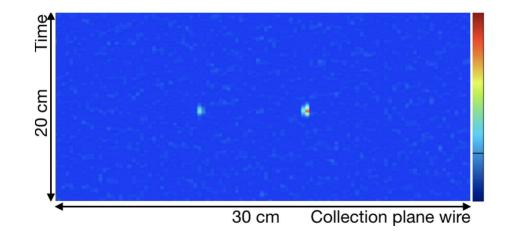

From P. Machado's FNAL PAC talk yesterday

Model	main signature	# protons	hadronic activity (≠ protons)	gap	dE/dx	invariant mass	opening angles	Highlight	motivation
Dark nu, light Z_D	e+e-	none	none	X	crucial	ZD	e+e- (small)	SBND	MB, M _v , portal
Dark nu, heavy Z_D	e+e-	similar to σ _{cc}	similar to σ_{CC}	any	relevant	no	e+e- (small)	SBND	MB, M _v , portal
Transition mag. mom.	γ	fewer than σ_{CC}^*	less than σ_{CC}^*	Y	crucial	no	γ-like	SBND	MB, consequence of M,
Axion-like particles	ť+t−	none	none	X	relevant	yes	large	SBND	Scalar sector
Heavy neutral leptons	ℓ+ℓ−,ℓπ,	none	none or hard	×	relevant	yes if no MET	large	µB/ICARUS	Mv
Higgs portal scalars	ℓ+t-	none	none	×	relevant	yes	large	µB/ICARUS	dark sector portal
Steriles+	e⁻, L/E	similar to σ _{CC}	similar to σ _{CC}	no	relevant	no	X	All SBN detectors	МВ
:	:	:	÷	:	:	:	:	:	:

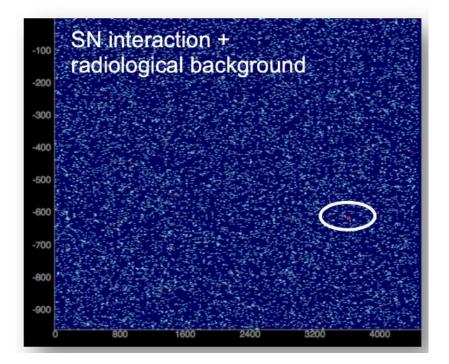
Section 3: Modelling LEPLAr


- What kind of neutrons and gammas do neutrino interactions make?
- What kind of neutrons and gammas do hadron inelastic interactions make, and how often do these interactions happen?
- How many blips do low-energy and high-energy neutrons make?
- Do we have software that does all of this modelling correctly?

NEUTRONS ON A = 40 Z = 18 EVAL: BLACK CIRCLE FLUKA: BLUE LONG DASH NASA: RED SOLID DGM-OM: BLACK SQUARE B&P: GREEN DOT-DASH W&A: MAGENTA DASH


Section 4: Detector Features and R&D

- What do we need to do to make sure our detectors see blips associated with good physics?
 - General requirements
 - Reducing charge collection noise
 - Improving light collection
 - Reducing external bkg (shielding etc)
 - Reducing internal bkg (depletion etc)
 - SP versus DP capabilities
 - Calibrating low energy signals
 - Calibration <u>WITH</u> low energy signals


Section 5: Reconstructing LEPLAr signals

- We need to produce a robust reconstruction chain for these kinds of signals
- Low-level processing
 - Hit finding, reco with low S:N
- High-level charge reco
 - 'Blip reconstruction'
- Light-based reconstruction

Section 6: Triggering and Readout Considerations

- How do we pull a blip 'needle' out of a DUNE 'haystack'? We don't have computing resources to look at every single piece of hay...
 - Solar and supernova nu!
- What are the solutions?
 - Supernova triggering schemes
 - Interesting-TPCs-only readout
 - 'ROI-only' triggering/readout
 - 'Trigger primitives'
 - Fast ML?

G. Karagiorgi

Section 7: Connections and Summary of Needs

- Bulleted list of every 'recommended item for future measurement/study given in all of the previous sections.'
- Tables relating 'LEPLAr physics goals' to 'Required modelling, detector, reco, and triggering developments/improvements'

Draft will be sent to DUNE APB (December 15)

Low Energy Physics in Liquid Argon

The LEPLAr Workshop Convener Team

2021

Contents 1 Introduction

2

Likely configuration Will be "limited authorship" and open to non-DUNE authors (TBC)

We can cross-reference related white papers!

		f the Signals	3		
2.1		part of HE events	4		
	2.1.1	Contribution from Shirley Li, ~ 1 page, a figure welcome	4		
	2.1.2	Impact of LE signatures on Oscillation Physics	4		
2.2	LE signatures in BSM searches				
	2.2.1	Contribution from Kevin Kelly, ~ 1 page, a figure welcome	8		
2.3	Summary of Panel 1 Discussion				
	2.3.1	Contribution from Brian Batell, $\sim 1-2$ paragraphs	10		
	2.3.2	Contribution from Enrique Fernandez Martinez, $\sim 1-2$			
		paragraphs	10		
	2.3.3	Contribution from William Foreman, $\sim 1 - 2$ paragraphs	10		
	2.3.4	Contribution from Lisa Koerner, $\sim 1-2$ paragraphs	10		
	2.3.5	Contribution from Pedro Machado, $\sim 1 - 2$ paragraphs,			
		a figure possible	10		
	2.3.6	Contribution from Michael Mooney, $\sim 1-2$ paragraphs,			
		a figure possible	10		
	2.3.7	Contribution from Elizabeth Worcester, $\sim 1-2$ paragraphs	10		
2.4	LE as part of LE events: SNB, Solar, etc.				
	2.4.1	Contribution from Evan O'Connor, ~ 1 page, a figure			
		welcome	10		
	2.4.2	Contribution from Irene Tamborra, ~ 1 page, a figure			
		welcome	10		
	2.4.3	Contribution from John Beacom, ~ 1 page, a figure welcome	10		
2.5	Blurbs from the panelists of panel 2				
	2.5.1	Contribution from Gabriel Orebi Gann, $\sim 1-2$ paragraphs	12		
	2.5.2	Contribution from Christopher Grant, $\sim 1-2$ paragraphs	12		
	2.5.3	Contribution from Thomas Janka, $\sim 1-2$ paragraphs, a			
		figure possible	12		
	2.5.4	Contribution from Bronson Messer, $\sim 1-2$ paragraphs,			
		a figure possible	12		
	2.5.5	Contribution from Cecilia Lunardini, $\sim 1-2$ paragraphs	12		

3 Physics in the Simulations

3

	3.1	v-Ar Cross Section Physics	13					
		3.1.1 Low-Energy Neutrino Interactions and Generators	13					
		3.1.2 High-Energy Interaction Considerations	13					
	3.2	Particle Propagation and Interaction in LAr	13					
		3.2.1 Transport of Low-Energy Neutrons in LAr	14					
		3.2.2 Transport of High-Energy Hadrons in LAr	16					
		3.2.3 Final-State Content From Nuclear Interactions in LAr	18					
		3.2.4 Summary	20					
4	Det	ector Parameters	21					
	4.1	General LAr TPC requirements for low energy physics (Josh Klein)	21					
	4.2	Improving photon detection for low energy physics (Flavio Ca-						
		vanna)	23					
	4.3	Improving TPC charge readout for low energy physics (Tom Junk)	24					
	4.4	Other possible improvements (Joseph Zennamo)	26					
	4.5	Panelists Dav3-1	26					
		4.5.1 Contribution from Alberto Marchionni	26					
		4.5.2 Contribution from Alex Himmel	26					
		4.5.3 Contribution from Jonathan Asaadi	27					
		4.5.4 Contribution from Mike Mooney	27					
		4.5.5 Contribution from Michel Sorel	27					
	4.6	Calibration systems for low energy physics (Sofia Andringa)	28					
	4.7	Low-energy signals for detector calibration (Mike Mooney)	28					
	4.8	Detector optimization in terms of backgrounds (Juergen Reichen-	-					
		bacher)	28					
	4.9	Panelists Day3-2	28					
		4.9.1 Contribution from David Caratelli	28					
		4.9.2 Contribution from Eric Church	28					
		4.9.3 Contribution from Erin Conley	28					
		4.9.4 Contribution from José Maneira	28					
		4.9.5 Contribution from Juergen Reichenbacher	28					
		4.9.6 Contribution from Tingjun Yang	28					
		0						
5	LAI	TPC Reconstruction at Low Energies	28					
	5.1	Low-level Charge Signal Reconstruction	28					
	5.2	High-Level Blip Reconstruction	30					
	5.3	Scintillation Light Signal Reconstruction	32					
6	Dat	Data Processing						
	6.1	Trigger	34					
		6.1.1 Augmented SNB Trigger for DUNE (contribution from						
		Mike Wang)	34					
	6.2	DAQ	34					
	6.3	Computing	34					
	0.10							

2

12