
OSG STORAGE/IRODS

INTEGRATION
Tanya Levshina

Ashu Guru

Why am I giving this talk?

 To provide a status report?

 Not really, though it is nice to explain what we are working on.

 To describe a new technology?

 Probably not, iRODS is well known and has been around for some time.

 To identify a new problem?

 Not likely, many of the OSG opportunistic users are aware of the
difficulties managing space and handling sizeable data movement

 To recruit guinea pigs?

 YES! We are very interested in people who want to try our new
approach.

 To solicit feedback and identify new use cases?

 YES!

3/22/2012 OSG AHM

2

Outline

 Use Cases

 Motivation and Problem Statement

 Requirements

 Proposed Solution

 iRODS overview

 High Level Architecture

 Proof of concept

 Conclusion

 Future Work

3/22/2012 OSG AHM

3

Use Cases

 SCEC, Fly's Eye experiment and others: Need to find sites for pre-staging
1-5 TB of data per site

 NEES – Needs to handle output: 1 GB of output file per job, total output: ~
4 TB; Total number of jobs: 3,780. Job duration: 6-12 hours

 SLAC Theory Group (Phenomenology) – Needs to handle output: 2 – 3GB
output file per job; 500 jobs submitted at a time, 8-12 hours per job

 Common questions:

 How to find sites that will host sizeable amount of data?

 Is there a tool that allows to replicate data/migrate pre-staged data?

 What should one do with the output files without bringing down a submission
node and without causing 12 hours job to fail only because space/storage is not
available?

 How to keep track of all the output files on OSG SEs?

3/22/2012 OSG AHM

4

Motivation and Problem Statement

One of the goals of the OSG is to provide the Virtual Organizations
(VOs) with opportunistic usage of grid resources. Storage is one of the
essential resources. The OSG initiated production scale Opportunistic
Storage provisioning and usage on all OSG sites.

The major complaints of the VOs relying on public storage are the
following:

 most of the sites do not support dynamic storage allocation and do
not have tools for automatic management;

 the VOs that rely on opportunistic storage have difficulties finding
an appropriate storage, verifying its availability and monitoring its
utilization;

 the involvement of a Production Manager, Site Admins and VO
support personnel is required to allocate or rescind storage space.

3/22/2012 OSG AHM

5

OSG ET Requirements

 Allow the OSG Production manager to manage

public storage allocation across all the participating

sites.

 Impose minimal burden on the participating sites.

 Simplify SE selection for data storage.

3/22/2012 OSG AHM

6

Proposed Solution

 Use iRODS as a resource management and data

movement service for the OSG public storage.

 Integrate iRODS with the OSG Storage Elements.

 Run iRODS as SaaS. Deploy it on a central node

along with iCAT catalog.

3/22/2012 OSG AHM

7

Why iRODS?

 The Integrated Rule-Oriented Data System (iRODS) is developed by the Data Intensive Cyber
Environments research group and collaborators.

 iRODS implements a policy-based data management framework.

 handles various objects (resources, collections and files)

 each object has a set of properties (metadata) associated with it

 properties are enforced by polices (set of Rules)

 rules trigger a chain of actions (micro-services). A chain of actions may include recovery from failures
and notification.

 Provides means to set quota limit and enforce quota management

 iRODS performs transfers by

 using implementation specific protocol to access POSIX compliant resources

 using an external driver to Mass Storage. The driver should implement "put" and "get" methods to
transfer entire files. File transfer is performed in two steps (disk cache is needed)

 The Metadata Catalog (iCAT) stores complete state information about the system in a
database. iCAT contains information about resources, resource usage, quotas and users. It also
serves as metadata catalog for users data collections.

 Widely used by scientific community (Biology, Environment , Physical Sciences, Geosciences, etc)

3/22/2012 OSG AHM

8

Phase I: Proof of Concept (I)

 Build, install and configure GSI-enabled iRODS

 Integrate iRODS with OSG SEs by using the existing srm-client

 Acquire/implement iRODS rules and micro-services that enforce the
following quota management capabilities and example policies:

 Set quota per resource and group (VO)

 Prevent users from uploading files if quota limit is reached

 Delete files from a SE in order to comply with changed quota limit

 Send notification about success/failure of the actions

 Register Engage VO as Engage group.

 Register several users (user name, email address, DN).

 Assign these users to Engage group
of iRODS.

 Register a couple of sites (UCSDT2 & Nebraska)

3/22/2012 OSG AHM

9

Phase I: Proof of Concept (II)

 Perform functionality tests:

 iRODS can authenticate user with x509 certificates

 A Production Manager can set/modify quota per resource
and group

 A user can upload/download/delete files to/from the OSG
SE via iRODS

 A user can not write via iRODS if quota limit on resource is
reached

 A user can register a file with iRODS after it was
successfully copied to a SE. That is typical use case for the
interaction of a job with iRODS from a worker node (WN).

 iRODS can delete files from storage if needed

 iRODS can send notification

3/22/2012 OSG AHM

10

High Level Architecture

Site A Site B

SE A
SE B

CE
CE

WN
WN

WN

WN
WN

WN

iRODS

Server
iCAT

Disk

Cache

GOC

rules

User VO I

User VO II

Production

manager

UnivMSS

Interface

Iput.py

1.Manage

 quotas

2.pre-stage data

Success

4. pre-stage date

Failure: over quota limit

5.submit job

6. run job

7. Copy file to SE

8. Register with iRODS

3
.
co

p
y
 f

il
e

3/22/2012 OSG AHM

11

Setting Group/Resource Quota

 For each resource/VO group a Production Manager sets a quota. The
information about total available public space on a specific site is provided
by a Site Administrator.

 A Production Manager decides how much space needs to be allocated for
a particular group (VO) on each resource. The space allocation could be
changed at anytime.

 A Production Manager sets quota using:

iadmin sgq Group ResourceName Value

 The rule that handles enforcement of quota is enabled in iRODS core rules.

 The quota limit change triggers the execution of the rule:

 Checks if quota is exceeded per group/resource

 If so, deletes files until space utilization is under the limit

 Sends email notifications to the owners of deleted files

 Sends report to irods admin

 A production manager monitors the current space utilization using iquota

3/22/2012 OSG AHM

12

Conclusion

 With our prototypical deployment, we have

demonstrated the feasibility of managing public

storage at the OSG sites with iRODS.

 A Production Manager can manage resource allocations

at remote sites between various VOs.

 No actions are required from the sites after initial

allocation of resources.

 A user can upload and download files from a user

laptop or a worker node using iRODS commands and

in-house developed scripts.

3/22/2012 OSG AHM

13

Future Work

 Before we can proceed to the next step we need to
test performance and scalability of the current
installation.

 We have identified the following goals for phase II:

 Test basic failure condition and recovery.

 Test resource allocation and management with two VOs and
several sites. Modify rules if needed.

 Identify a VO, users that can benefit from access to public
storage via iRODS.

 Negotiate with the OSG sites.

 Help a selected user to adopt a new workflow.

3/22/2012 OSG AHM

14

Additional Slides

3/22/2012 OSG AHM

15

Data Upload Workflow

Disk

Cache

irods

UnivMSS

interface

proxy

rules

iCAT

1. Iput srmGroup file

2. Irods internal call

3. Irepl srmResouce file

4. Irods internal call to UnivMSS

5. UnivMSS checks metadata to find surl

6. UnivMss get proxy

7. srmp-copy

8. univMSS returns, irods internal calls

9. Irm –n 0 file

10. msiSendEmail

1

2

3

4

5
6

SE A

7

9

file

file

file

file

8

10

3/22/2012 OSG AHM

16

Data Upload From A Worker Node

irods

iCAT

1. User’s script creates output

2. Script calls iput wrapper

3. Wrapper issues calls to irods to find out

if local SE exists and has enough space

4. Wrapper copies file to SE

5. Wrapper registers file wit irods (ireg)

1

2

3

4

5

SE A file

file

WN
user’s

job

iclient

Iput.pl

file

3/22/2012 OSG AHM

17

iRODS Service Certificate

 Obtain iRODS service certificate

 Register iRODS service certificate as a member with

participating VOs. Currently (HCC, Fermilab and

Engage).

 Create and periodically update proxy certificate

for all the VOs using cronjob or other means.

 Proxy files are named <voname>_proxy and

located in ~irods/.globus directory.

3/22/2012 OSG AHM

18

Setting IRODS Resources

(create_srm_resource.sh)

 Creates a resource group, e.g osgSrmGroup

 Pulls information from bdii for a particular VO. Creates compound resources of type “MSS

Universal Driver” for all participating sites with Storage Elements. Resource name is set to Site

Names: Firefly, UCSDT2, AGLT2

 Adds metadata from bdii for each resource. Metadata contains – surl, end path for each VO

and local path if exists, eg:
imeta ls -R UCSDT2

attribute: hcc

value: /hadoop/hcc/irods/,/hadoop/hcc/irods

attribute: Engage

value: /hadoop/engage/irods/,/hadoop/engage/irods

attribute: surl

value: srm://bsrm-1.t2.ucsd.edu:8443/srm/v2/server

 Sets quota to “1 byte” for all resources

 Creates cache resource of type “unix file system” , e.g diskCache

 Adds all these resources to the resource group

3/22/2012 OSG AHM

19

List of resources

ilsresc

UC_ITB

BNL-ATLAS

NYSGRID_CORNELL_NYS1

Vanderbilt-ITB

MWT2

TTU-ANTAEUS

FNAL_FERMIGRID_ITB

diskCache

Purdue-RCAC

UCSDT2

SPRACE

Vanderbilt

FNAL_FERMIGRID

Firefly

FNAL_IRODS_TEST1

UConn-OSG

GLOW

CIT_CMS_T2

Nebraska

UCR-HEP

WT2

FNAL_GPGRID_1

osgSrmGroup (resource group)

 3/22/2012 OSG AHM

20

Setting iRODS Users and Groups

 Create an iRODS group for each participating VO. A group name should be the same as a VO name.

 User information can be populated by contacting corresponding VOMS instance and extracting user DN,
email address (create_user.sh)

 It is unclear how to create a user name in iRODS when we start automatic registration of users. One way of doing it is to
add an attribute to VOMS (irods login). The similar approach is used by some major VOs for afs login.

iuserinfo tlevshin

name: tlevshin

id: 10519

type: rodsuser

zone: osg

info: tlevshin@fnal.gov

comment:

create time: 01329602644: 2012-02-18.16:04:04

modify time: 01329602680: 2012-02-18.16:04:40

GSI DN or Kerberos Principal Name: /DC=org/DC=doegrids/OU=People/CN=Tanya Levshina 508821

tlevshin member of group: Engage

3/22/2012 OSG AHM

21

mailto:tlevshin@fnal.gov

Modification of univMSSinterface.sh

This script is executed by iRODS when irepl, irm and ireg
commands are issued. It performs the following actions:

 Determines user’s group and finds appropriate proxy
service certificate using irods client commands

 Gets surl and end path from resource metadata

 So far we have implements the following methods:

 syncToArch (srm-copy local_cache surl)

 stageToCache (srm-copy surl local_cache)

 rm (srm-rm surl)

 mkdir (srm-mkdir surl)

 stat (srm-ls surl)

3/22/2012 OSG AHM

22

Data Management Rules

 Quota_Management rule:

 Checks if quota is exceeded per group/resource

 If so, deletes files until space utilization is under the limit

 Sends email notifications to the owners of deleted files

 Sends report to irods admin

 Replication Rule:

 Finds all the files that are located on a disk cache but not in any
storage. Selects best storage for the file, replicates the file, deletes it
from disk cache.

 Sends email notification that file is available on a specific resource

 Disk Cache Clean up rule:

 Periodically checks disk cache and deletes files that have been
replicated. This situation occurs when user upload file to a particular
compound resource using “iput compoundResc file”

3/22/2012 OSG AHM

23

File Registration From a Worker Node

Use Case: A user wants to submit a job to the grid and needs
upload data to the local SE from a worker node

 We will need iRODDS client command to be installed on
worker nodes (for now it is shipped as a tar.gz file with a
job).

 A wrapper script has to be shipped with a job. This script
allows to:

 check if local storage exists (resource metadata info)

 check if file could be stored locally (quota limit)

 check if local mount is available or get surl (resource metadata
info)

 upload file using appropriate copy command

 register this file with iRODS using ireq command

3/22/2012 OSG AHM

24

Example of the Job Submission File

 Job submission file:

#test job

executable = irods_iput_test.sh

#irods user enviroment, contains information about irods server , host, username , home are etc

environment = "irodsEnvFile='irodsEnv' Process=$(Process) Cluster=$(Cluster)"

irods client command, wrapper script

transfer_input_files = irods_client.tar.gz,client.tar,irodsEnv

requirements = (arch == "X86_64")

log = irods_test_run_$(Cluster)_$(Process).log

output = irods_test_run_$(Cluster)_$(Process).out

error = irods_test_run_$(Cluster)_$(Process).err

x509userproxy = /tmp/x509up_u4461

notification = Never

should_transfer_files = YES

when_to_transfer_output = ON_EXIT

arguments =

queue

3/22/2012 OSG AHM

25

Test Job Example

 Test job script
#!/bin/bash

#untar irods related execs

tar xfz irods_client.tar.gz

tar xvf client.tar

#create test file

fn=irods_test_${GLIDEIN_ResourceName}

dd if=/dev/urandom bs=1024 count=1024 of=${fn}.${Cluster}_${Process}

echo "Running at the site ${GLIDEIN_ResourceName}" >>irods_commands.${Cluster}.${Process}.log 2>&1

export PATH=bin/:$PATH

client/iput.py -d ${fn}.${Cluster}_${Process} >>irods_commands.${Cluster}.${Process}.log 2>&1

rm ${fn}.${Cluster}_${Process}

exit $?

3/22/2012 OSG AHM

26

File Listing Example

ils -l

/osg/home/tlevshin:

 tlevshin 0 Nebraska 1048576 2012-02-22.21:46 & irods_test_AGLT2.2858468_0

 tlevshin 0 Nebraska 2012 2012-02-22.14:15 & irods_test_AGLT2.2858469_0

 tlevshin 0 Nebraska 2012 2012-02-22.14:29 & irods_test_AGLT2.2858470_0

 tlevshin 0 Nebraska 1048576 2012-02-22.22:31 & irods_test_AGLT2.2858473_0

 tlevshin 0 UCSDT2 1048576 2012-02-28.14:54 & irods_test_AGLT2.2960375_0

 tlevshin 0 UCSDT2 1048576 2012-02-28.15:02 & irods_test_AGLT2.2966498_0

 tlevshin 0 UCSDT2 1048576 2012-02-28.15:13 & irods_test_AGLT2.2971401_0

 tlevshin 0 Nebraska 1048576 2012-02-22.21:44 &
irods_test_FNAL_GPGRID_1.2858465_0

 tlevshin 0 Nebraska 2012 2012-02-22.14:11 & irods_test_MWT2_UC.2858467_0

 tlevshin 1 Nebraska 735804 2012-02-22.21:43 & test_101

 tlevshin 1 Nebraska 1048576 2012-02-23.13:33 & testfile_UCSDT2_1

 tlevshin 1 Nebraska 20971520 2012-02-23.13:59 & testfile_UCSDT2_2

 tlevshin 1 UCSDT2 1048576 2012-02-27.17:19 & testfile_UCSDT2_4

 tlevshin 1 UCSDT2 20971520 2012-02-27.17:20 & testfile_UCSDT2_5

3/22/2012 OSG AHM

27

File Listing with srm-ls

You can see file via srm-ls as well:
srm-ls srm://bsrm-
1.t2.ucsd.edu:8443/srm/v2/server?SFN=/hadoop/engage/irods/home/tlevshin
/irods_test_AGLT2.2971401_0

srm-ls 2.2.2.2.0 Wed Dec 14 11:45:28 PST 2011

SRM-CLIENT*REQUEST_STATUS=SRM_SUCCESS

SRM-
CLIENT*SURL=/hadoop/engage/irods/home/tlevshin/irods_test_AGLT2.2971401
_0

SRM-CLIENT*BYTES=1048576

SRM-CLIENT*FILETYPE=FILE

SRM-CLIENT*FILE_STATUS=SRM_SUCCESS

SRM-CLIENT*FILE_EXPLANATION=Read from disk..

SRM-CLIENT*FILELOCALITY=ONLINE

3/22/2012 OSG AHM

28

