Status of Federated Xrootd in ATLAS

R. Gardner

19-Mar-12

FAX Working Group

- Led by Wei Yang, R.Gardner (US facilities integration)
- Doug Benjamin
- Andy Hanushevsky
- Hiro Ito
- Patrick McGuigan
- Shawn McKee

- Ofer Rind
- Horst Severini
- Sarah Williams

- Meet bi-weekly
- Next workshop coming up April 11-12, Chicago

Motivations for federation

- Provide transparent read access to remote data from any compute server
- Reduce local storage and data management requirements for Tier3 clusters or from within Cloud resources
- More efficienct utilization of storage & cpu resources

Example regional case

- The 5 sites in ANALY_AGLT2 & ANALY_MWT2 are all within 7 ms RTT
- ANALY_MWT2 is already an (internally) federated 3-site wide area queue
- Combined storage ~ 4.4 PB
- A regional redirector would allow sharing of datastets between AGLT2 and MWT2

Federating data stores in the US Cloud

- Storage resources at T1 and 5 Tier2 centers (10 sites) curently total 17.7 PB disk
- Three Tier2 centers are mulit-site and share distributed storage resources across WAN (AGLT2, MWT2, NET2)
- O(20) analysis T3g sites: some would federate as sources, others would use the federation as clients

backend profile in US (TI,T2 sites)

- ~13 PB in dCache
- ~3.5 PB in Xrootd
- By April:
 - 2.2 PB at each T2
 - 8.1 PB at TI
 - ~ 17.7 PB total

Export Xrootd storage via Xrootd Proxy cluster

SLAC, SWT2

Export dCache Xrootd doors via Xrootd Proxy cluster, 1 BNL, AGLT2

Overlapping Xrootd cluster on top of dCache

Export Posix storage via regular Xrootd cluster

SWT2_OU, BU

Deployment Status

- http://uct3-xrdp.uchicago.edu:8080/rsv/
- based on OSG monitoring framework
- Probes sites every 15 minutes
- Tests direct transfers and via global redirector
- Also does simple ping and file comparision checks

USATLAS Federated Xrootd Status -2011-10-11 16:14:35

Frequently Asked Questions

Host: atlas29.hep.anl.gov						
Metric	Last Executed	Enabled?	Next Run Time	Status		
org usatlas arootd ping	2011-10-11 16:05:06 CDT	YES	2011-10-11 16:20:00 CDT	OK		
org.usatlas.xrootd.xrdcp-compare	2011-10-11 16:05:05 CDT	YES	2011-10-11 16:20:00 CDT	OK		
org.usatlas.xrootd.xrdcp-direct	2011-10-11 16:05:05 CDT	YES	2011-10-11 16:20:00 CDT	OK		
org.usatlas.xrootd.xrdcp-fax	2011-10-11 16:05:06 CDT	YES	2011-10-11 16:20:00 CDT	OK		
Host: atlgridftp01.phy.duke.edu	Host: attorid(tot), also duke edu					
Metric	Last Executed	Enabled?	Next Run Time	Status		
org.usatlas.xrootd.ping	2011-10-11 16:05:05 CDT	YES	2011-10-11 16:20:00 CDT	OK		
org.usatlas.xrootd.xrdcp-compare	2011-10-11 16:05:04 CDT	YES	2011-10-11 16:20:00 CDT	OK		
org.usatlas.srootd.srdcp-direct	2011-10-11 16:05:05 CDT	YES	2011-10-11 16:20:00 CDT	OK		
org.usatlas.xrootd.xrdcp-fax	2011-10-11 16:05:06 CDT	YES	2011-10-11 16:20:00 CDT	OK		
Host: dcdoor09.usatlas.bnl.gov						
Metric	Last Executed	Enabled?	Next Run Time	Status		
org.usatlas.srootd.ping	2011-10-11 16:05:05 CDT	YES	2011-10-11 16:20:00 CDT	OK		
org.usatlas.xrootd.xrdcp-compare	2011-10-11 16:05:06 CDT	YES	2011-10-11 16:20:00 CDT	OK		
org.usatlas.arootd.andcp-direct	2011-10-11 16:05:03 CDT	YES	2011-10-11 16:20:00 CDT	OK		
org.usatlas.srootd.srdcp-fax	2011-10-11 16:05:05 CDT	YES	2011-10-11 16:20:00 CDT	OK		
Host: dedoor10.usatlas.bnl.gov						
Metric	Last Executed	Enabled?	Next Run Time	Status		
org usatlas arootd.grid-ardcp-compare	2011-10-11 16:05:06 CDT	YES	2011-10-11 16:20:00 CDT	OK		
org usatlas arootd.grid-ardcp-direct	2011-10-11 16:05:05 CDT	YES	2011-10-11 16:20:00 CDT	OK		
org usatlas arootd grid-ardep fax	2011-10-11 16:05:03 CDT	YES	2011-10-11 16:20:00 CDT	OK		

adopting CMS-like monitor

- Courtesy Matevz Tadel UCSD (thank you!)
- Detailed xrootd monitoring information sent to collector
- Tracks files (global names) in use, when opened, server, client, MB read
- Provides IO visibility in federation

OpenAgo	ServerDomain	ClientDomain User	Read [MB]	UpdateAgo
02:38:26	slac.stanford.edu	23.40.189	347.835	00:00:05
00:04:05	slac.stanford.edu	uchicago.edu	11.003	00:02:54
00:04:05	slac.stanford.edu	uchicago.edu	11.008	00:02:53
00:02:53	slac.stanford.edu	uchicago.edu	11.126	00:01:48
00:02:53	slac.stanford.edu	uchicago.edu	11.020	00:01:51
00:01:49	slac.stanford.edu	uchicago.edu	10.982	00:00:46
00:01:49	slac.stanford.edu	uchicago.edu	11.125	00:00:48
00:01:49	slac.stanford.edu	uchicago.edu	11.125	00:00:49
00:01:49	slac.stanford.edu	uchicago.edu	11.125	00:00:48
				00:00:-6

00:00:-7

00:00:-7

00:00:-4

File

/atlas/xrootd/atlasdatadisk/data11_7TeV/AOD/r260_p659_tid493619_00/AOD.493619._000001.pool.root.1

/atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000001.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000002.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000002.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000002.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000003.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000003.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000003.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000003.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000003.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000004.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000004.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000004.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000004.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NTUP_SMWZ.e773_s933_s946_r2302_r2300_p591_tid408566_00/NTUP_SMWZ.408566_000004.root.1 /atlas/dq2/mc10_7TeV/NTUP_SMWZ/e773_s933_5_WW2lep.merge.NT

TTreeCache WAN tests (I)

- Standard model analysis over ntuple datasets by D. Benjamin show good results local versus remote (Argonne to BNL)
- Systematically measure walltime efficiency for reads between sites & determine optimal TTreeCache options

WAN CPUTIME=1168 WALLTIME=2744 eff = 43%

Local xrootd CPUTIME=1150 WALLTIME=1442 eff=80%

TTreeCache studies: read vs analysis

Latencies in the federation

..to remote IO testing

ep.anl.gov >01.phy.duke.edu).usatlas.bnl.gov).usatlas.bnl.gov .s-swt2.org las.org

Host: griddev01.slac.stanford.edu Host: griddev02.slac.stanford.edu Host: gw01.tier3-atlas.uta.edu Host: itb3.uchicago.edu Host: manage.aglt2.org Host: osgx3.hep.uiuc.edu Host: ouhep03.nhn.ou.edu Host: tier2-03.ochep.ou.edu Host: uct2-grid5.uchicago.edu Host: uct3-xrdp.uchicago.edu Host: lxplus.cern.ch

140 ms

TTreeCache WAN tests (2)

- Investigate efficiency varying %events read and TTreeCache size
- Steady improvement with buffer size
- With large enough buffers 80% to ~50% wall time efficiency

		% events read (30	% events read (30MB buffer)		
Server	10%	50%	100%	100%	
SLAC	WALLTIME=35.8	WALLTIME=74.5	WALLTIME=105.9	WALLTIME=76.0	
	CPUTIME=11.9	CPUTIME=25.12	CPUTIME=41.57	CPUTIME=41.78	
BNL	WALLTIME=28.2	WALLTIME=61.6	WALLTIME=87.8	WALLTIME=62.3	
	CPUTIME=12.01	CPUTIME=25.27	CPUTIME=45.66	CPUTIME=41.69	
SWT2-UTA	WALLTIME=28.1	WALLTIME=40.9	WALLTIME=66.78	WALLTIME=56.4	
	CPUTIME=12.06	CPUTIME=22.6	CPUTIME=41.69	CPUTIME=41.78	
AGLT2	WALLTIME=25.4	WALLTIME=45.0	WALLTIME=58.5	WALLTIME=49.5	
	CPUTIME=11.9	CPUTIME=25.3	CPUTIME=44	CPUTIME=41.65	
MWT2	WALLTIME=18.8	WALLTIME=29.4	WALLTIME=48.6	WALLTIME=46.2	
	CPUTIME=11.93	CPUTIME=25.2	CPUTIME=44	CPUTIME=42.11	

Summary of direct access federation testing

Mode	Tested	Туре	relative performance
 T3 access to other T3s via global name 		local script	Limited testing so far - T3gs tested
• T3 access to T2 via global name		local script	Good
 T3 access to T1 via global name 		local script	Good
• T2 access to itself via global name		local script, Panda	Excellent
 T2 access to T1 via global name 		local script, Panda	Good
 T2 access to other T2 via global name 		Panda	Varies
• T2 access to T3 in the federation		local script, Panda(!)	Can be good

• Many access modes are possible, and with appropriate TTreeCache settings performance can be good enough to compliment local access

Other work

- Xrootd 3.1.1 now deployed at most US sites
- X509 VOMS mapping now available implementing on sites
- dq2-client 1.0 supports the global file name
- git repo for sharing configurations
- Improvements to N2N methods working well
 - requires LFC lookup so potentiall an issue with consolidation, to be tested
- Focus has been on direct reading over WAN but in future we know stage-in/caching will be important

R&D to production?

- Subject the current set of sites to regular testing at significant analysis job scale (in HammerCloud)
- Provide redirector of highly performing data sources
- More experience with TTreeCache settings with well defined examples for users
- Explore augmenting current ANALY workflow to use FAX when problems with local SE or missing files (Athena or Ism, eg.)
 - or to expand number of queues available to users (no local input dataset requirement)
- Other regions in ATLAS are interested in trying out federation

Conclusions

- An R&D federated xrootd has been deployed over production storage resources over a large region
- Some Tier3's are using T1 and T2 redirectors directly in production (BNL and UC)
- Wide adoption would be indicated so long as WAN performance is decent enough