

Configuration Management at the
USAtlas Tier1 Facility

Jason A. Smith
Brookhaven National Lab

Components

● Cobbler/RHEV – New system provisioning
● Puppet – Centralized config management

– Complete service config after provisioning

– Dashboard monitoring & change auditing

● Git – Puppet catalog repository
– Distributed development & historical record

● GLPI – Asset mgmt. & node classification
– Fusioninventory-agent: auto asset inventory

– ENC uses GLPI, custom DB & dashboard

Provisioning

● Cobbler for hardware installs:
– Powerful Cheetah templating language and

config/code reuse with “Snippets”

– Single ks template used for most systems

– Specify OS version & arch, network (MAC, IP,
etc) & template metadata to install base OS,
including fusioninventory-agent & puppet

● RHEV 3.0 for virtual machines:
– Single template image used for new systems

– 10 node cluster with 4TB of shared fiber storage
● Should support several hundred VMs

Why Git?

● Distributed version control system
● Faster, completely localized project copies

– Commits and other work can be done offline

– Local copy contains complete history

● Reduced single point of repository failure
– Git can merge changes between many “servers”

● Simple, fast & clean branching (and merging)
– Branches easily merged with other branches

– All changes can be treated as branches

Why Puppet?

● Cfengine, puppet, chef, etch, bcfg2, AutomateIt
● Puppet was selected for several reasons:

– Simple yet powerful DSL (Domain-Specific
Lang) & RAL (Resource Abstraction Layer)

– Explicitly declared dependency graphing model
● Provides better deterministic state convergence

– Central config catalog & dependency resolution
● Better security, conflict resolution & logic analysis

– Web dashboard, GraphViz config visualization

– Long history, stable codebase, large user base

– Free OpenSource (optional commercial support)

GLPI Node Classification

Puppet Environments

● Currently using 3 puppet environments linked
to git branches:

– Development: extensive module changes

– Testing: small changes and wider testing
● Changes staged for production

– Production: main server management
● Changes must be approved before they are

merged into the production branch/environment

● Git branches are automatically sync'ed to
puppet environments by push hooks.

– Also verifies puppet syntax and other checks

Production Approval

Cgit Diff View

Puppet Dashboard

Puppet Config & Scalability

● Still using 2.6.14 on RHEL5 with ruby 1.8.5
– testing upgrade to 2.7 on RHEL6 with ruby 1.8.7

● Apache with Phusion Passenger (mod_rails)
● Queue daemon with activemq for fast DB

updates of storeconfigs
● Over 2k agents currently using puppet
● Noticed MySQL errors with inventory service

enabled with a rate of about 1 client/second
● Will look at Tomcat/JRuby later since early test

show promise, but it still has problems

Future Plans

● Change Management
– Policy & procedures used to control changes

made to production systems (ITIL, DevOps).

– Changes made only during official windows.

– Absolutely no unauthorized changes, no
“cowboy” type behavior tolerated.

– Use testbed environment to test changes before
putting them into production.

● Create replica of prod using VMs for auto-tests

– Tools like Puppet, Git & GLPI can help make
changes and keep a historical change record.

Why do it?

● Uncontrolled change can work sometimes, but
often cause self inflicted problems and future
firefighting episodes & upgrade nightmares.

● Stop duplicating work and effort, standardize.
● Stop making time consuming manual changes.
● Without it, servers become like snowflakes:

they may all start out identical, but over time,
config drift eventually makes each one
unique.

Benefits

● Shift staff time from perpetual reactive
firefighting mode, that often only addresses
the symptoms, to more proactive work, that
addresses the root causes of problems (fire
prevention).

● Repeatable and standard build & config
process means it is often faster and easier to
rebuild problematic servers, rather than
waste hours or days troubleshooting
problems.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

