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What are glideins?

● GlideinWMS is an implementation of a pilot 
Workload Management System

● A Pilot is simply a grid job that lands on a 
worker node and reserves a slot in advance for 
a user job.
● When it gets there it calls home to retrieve the user 

job

● We call pilot jobs glideins in GlideinWMS



  

Why use glideins?
● Allows CMS to have a global queue to 

implement priorities
● Site failures are not seen by the end user
● Direct grid submission requires overhead.

● If a pilot is already on a WN and not currently 
“claimed” when a user submits a job the startup 
overhead is greatly reduced.

● Efficiency significantly increases on average if 
you have a continuous workflow of many jobs on 
sites for long periods of time (like CMS)
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Architecture
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GlideinWMS Components

● User Pool
● Implementation of global queue

● Glidein Frontend
● Watch global queue, requests resources

● Glidein Factory
● Submit glideins in response to resource requests



  

User Pool

● The user pool looks like any other Condor pool
● Except that instead of on a local cluster, the pool 

slots are spread out on Sites all over the grid

● It has a condor queue that user jobs join on 
submission
● This is what the Frontend checks periodically

● When new glideins start, the slots they reserve 
join the condor pool
● NOTE This is independent of the underlying batch 

system the Site runs!



  

Glidein Frontend

● The Frontend is responsible for checking on 
waiting user jobs and sending requests to the 
Factory to submit glideins as needed 

● User Pool / Frontend operators monitor user 
jobs and spot problem users  



  

Glidein Factory

● The factory receives requests from the 
Frontend and submits glideins to requested 
Sites using Condor-G

● Knowledge about how to submit to various 
Sites is stored in the Factory configuration

● Factory Operators perform routine maintenance 
on the Factory as well as monitor glideins to 
ensure they are running on Sites without error.
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Startup Validation

● Users don't need to worry about Site problems
● Glideins do startup validation.  If a WN does not 

have an adequate environment for a job to run 
the glidein terminates immediately and reports 
why.

● User jobs will never land on a node that fails 
validation
● “Black hole nodes” do not affect the end user



  

Validation Examples

● Checks that CMSSW is available
● If gLExec is there, test if it works
● If Squid proxy cache is available glideins will try 

to use it
● Ensure pilot proxy has long enough lifetime
● Other internal GlideinWMS checks to ensure 

glidein can run before it starts
● In the future add validation similar to SAM Tests



  

Notes on gLExec 

● If available on the WNs glideins will use it
● Two levels of protection:

● Protects glidein itself from malicious user
● Protects users from each other who run on the 

same glidein

● Additional benefit of running gLExec:
● Admins can find the real user in the glexec logs



  

Glidein Lifetime

● Glideins don't reserve slots forever.
● If a glidein is idle with no user jobs to claim it for 

20 minutes it terminates.
● Factory Operators monitor global time wasted

● Otherwise the glidein lives as long as we define 
it to.
● We typically set its lifetime to the 

MaxWallClockTime or MaxCPUTime (whichever is 
shorter) from BDII minus a small delta



  

Glideins Protect User Jobs

● User jobs are not tied to the pilots they land on
● If a pilot fails the user job will just restart on a new 

pilot somewhere else.  It requires no user re-
submission
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Support Teams

● Cms-wms-support (funded by CMS)
● cms-wms-support@physics.ucsd.edu

– James Letts et. al
● All complaints about Users go here

● Osg-gfactory-support (funded by OSG)
● osg-gfactory-support@physics.ucsd.edu

– Dost, Mortensen et. al
● All complaints about glideins go here

● T1 Only Support
● Not relevant to T2s / T3s thus left out of this talk

mailto:cms-wms-support@physics.ucsd.edu
mailto:osg-gfactory-support@physics.ucsd.edu
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Global Queue

● User priority is no longer controlled at the Site 
level but Globally in the glideinWMS User Pool

● Exploring ways to make the Global Queue even 
more Site independent by exploiting Frontend 
matchmaking

● One such example is the Overflow setup



  

Overflow

Job 1
Job 2
Job 3

Queue

Job requesting to run at 
Nebraska (data it wants is 
there)

Has been pending >6h

● If Jobs for a site are Pending in Global Queue 
for more than 6 hours, run the job elsewhere



  

Overflow

Job 1
Job 2
Job 3

Queue

Frontend

Wisc

UCSD

Request Glideins at UCSD and WISC!

Nebraska



  

UCSD

Overflow

Job 2

Wisc

Nebraska

Job lands on glidein at UCSD but then 
uses xrootd to access Nebraska 
Storage!

xrootd
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Role of cms-wms-support

● Control which sites to request to and what 
should run there

● Identify problematic user jobs
● Investigate held user jobs
● Monitor health of overflow
● Configure Global Queue

● Configure special matchmaking such as overflow
● In the future configure CMS overflow to 

opportunistic sites and even to clouds



  

Role of osg-gfactory-support

● Report Site issues through GOC and Savannah 
Ticketing systems

● Work closely with Site Admins to help debug 
problems

● Temporarily stop and resume submission as 
needed during site downtimes

● Configure Glidein Factory to submit to new 
resources

● Update Factory configuration to reflect Site 
changes (e.g. decommission / replace CEs)



  

Conclusion

● Glidein System jointly operated between CMS 
and OSG
● People power at CERN, FNAL, and UCSD
● Hardware at GOC, CERN, FNAL, UCSD

● CMS is one of ~12 Communities served by 
OSG Glidein Factory
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