

Glideins for CMS on OSG

Jeff Dost (UCSD)

Overview

● Architecture
● Concept of a Global Queue
● Operations

What are glideins?

● GlideinWMS is an implementation of a pilot
Workload Management System

● A Pilot is simply a grid job that lands on a
worker node and reserves a slot in advance for
a user job.
● When it gets there it calls home to retrieve the user

job

● We call pilot jobs glideins in GlideinWMS

Why use glideins?
● Allows CMS to have a global queue to

implement priorities
● Site failures are not seen by the end user
● Direct grid submission requires overhead.

● If a pilot is already on a WN and not currently
“claimed” when a user submits a job the startup
overhead is greatly reduced.

● Efficiency significantly increases on average if
you have a continuous workflow of many jobs on
sites for long periods of time (like CMS)

Overview

● Architecture
● Concept of a Global Queue
● Operations

Architecture

● Components of WMS
● Glidein Internals
● Topologies of Production Systems
● Support Teams

GlideinWMS Components

● User Pool
● Implementation of global queue

● Glidein Frontend
● Watch global queue, requests resources

● Glidein Factory
● Submit glideins in response to resource requests

User Pool

● The user pool looks like any other Condor pool
● Except that instead of on a local cluster, the pool

slots are spread out on Sites all over the grid

● It has a condor queue that user jobs join on
submission
● This is what the Frontend checks periodically

● When new glideins start, the slots they reserve
join the condor pool
● NOTE This is independent of the underlying batch

system the Site runs!

Glidein Frontend

● The Frontend is responsible for checking on
waiting user jobs and sending requests to the
Factory to submit glideins as needed

● User Pool / Frontend operators monitor user
jobs and spot problem users

Glidein Factory

● The factory receives requests from the
Frontend and submits glideins to requested
Sites using Condor-G

● Knowledge about how to submit to various
Sites is stored in the Factory configuration

● Factory Operators perform routine maintenance
on the Factory as well as monitor glideins to
ensure they are running on Sites without error.

Architecture

● Components of WMS
● Glidein Internals
● Topologies of Production Systems
● Support Teams

Startup Validation

● Users don't need to worry about Site problems
● Glideins do startup validation. If a WN does not

have an adequate environment for a job to run
the glidein terminates immediately and reports
why.

● User jobs will never land on a node that fails
validation
● “Black hole nodes” do not affect the end user

Validation Examples

● Checks that CMSSW is available
● If gLExec is there, test if it works
● If Squid proxy cache is available glideins will try

to use it
● Ensure pilot proxy has long enough lifetime
● Other internal GlideinWMS checks to ensure

glidein can run before it starts
● In the future add validation similar to SAM Tests

Notes on gLExec

● If available on the WNs glideins will use it
● Two levels of protection:

● Protects glidein itself from malicious user
● Protects users from each other who run on the

same glidein

● Additional benefit of running gLExec:
● Admins can find the real user in the glexec logs

Glidein Lifetime

● Glideins don't reserve slots forever.
● If a glidein is idle with no user jobs to claim it for

20 minutes it terminates.
● Factory Operators monitor global time wasted

● Otherwise the glidein lives as long as we define
it to.
● We typically set its lifetime to the

MaxWallClockTime or MaxCPUTime (whichever is
shorter) from BDII minus a small delta

Glideins Protect User Jobs

● User jobs are not tied to the pilots they land on
● If a pilot fails the user job will just restart on a new

pilot somewhere else. It requires no user re-
submission

Architecture

● Components of WMS
● Glidein Internals
● Topologies of Production Systems
● Support Teams

CMS Production + MC

WMAgent

schedd

schedd

collector

frontend

factory

factory

CERN

UCSD

CERN

T2s

CERN (x3)

FNAL (x3)

CERN

T1s

Single User Pilots; DN with Role=production
* A T1 only gwms system also exists at FNAL
 - Not relevant to T2/T3; left out of this talk

CMS AnaOps

CRAB2 schedd

schedd

collector

frontend

factory

factory

factory

UCSD
UCSD

UCSD

UCSD

GOC

CERN

T2s

T3s

Multi-User Pilots; DN with Role=pilot

Architecture

● Glidein Internals
● Components of WMS
● Topologies of Production Systems
● Support Teams

Support Teams

● Cms-wms-support (funded by CMS)
● cms-wms-support@physics.ucsd.edu

– James Letts et. al
● All complaints about Users go here

● Osg-gfactory-support (funded by OSG)
● osg-gfactory-support@physics.ucsd.edu

– Dost, Mortensen et. al
● All complaints about glideins go here

● T1 Only Support
● Not relevant to T2s / T3s thus left out of this talk

mailto:cms-wms-support@physics.ucsd.edu
mailto:osg-gfactory-support@physics.ucsd.edu

Overview

● Architecture
● Concept of a Global Queue
● Operations

Global Queue

● User priority is no longer controlled at the Site
level but Globally in the glideinWMS User Pool

● Exploring ways to make the Global Queue even
more Site independent by exploiting Frontend
matchmaking

● One such example is the Overflow setup

Overflow

Job 1
Job 2
Job 3

Queue

Job requesting to run at
Nebraska (data it wants is
there)

Has been pending >6h

● If Jobs for a site are Pending in Global Queue
for more than 6 hours, run the job elsewhere

Overflow

Job 1
Job 2
Job 3

Queue

Frontend

Wisc

UCSD

Request Glideins at UCSD and WISC!

Nebraska

UCSD

Overflow

Job 2

Wisc

Nebraska

Job lands on glidein at UCSD but then
uses xrootd to access Nebraska
Storage!

xrootd

Overview

● Architecture
● Concept of a Global Queue
● Operations

Role of cms-wms-support

● Control which sites to request to and what
should run there

● Identify problematic user jobs
● Investigate held user jobs
● Monitor health of overflow
● Configure Global Queue

● Configure special matchmaking such as overflow
● In the future configure CMS overflow to

opportunistic sites and even to clouds

Role of osg-gfactory-support

● Report Site issues through GOC and Savannah
Ticketing systems

● Work closely with Site Admins to help debug
problems

● Temporarily stop and resume submission as
needed during site downtimes

● Configure Glidein Factory to submit to new
resources

● Update Factory configuration to reflect Site
changes (e.g. decommission / replace CEs)

Conclusion

● Glidein System jointly operated between CMS
and OSG
● People power at CERN, FNAL, and UCSD
● Hardware at GOC, CERN, FNAL, UCSD

● CMS is one of ~12 Communities served by
OSG Glidein Factory

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

