Spin correlation in EEC-type observable

Hua Xing Zhu **Zhejiang University**

H. Chen, Moult, HXZ, 2011.02492, 2104.00009

Snowmass EF05 topical group meeting 27.9.2021

Quantum superposition with gluon

Quantum superposition is a fundamental principle, and one of the most publicized concept of quantum mechanics.

Very well tested using photon, atom, ion, molecule, or even top quark.

Tr

spìn density matrix p

A quick intro to EEC and its multipoint generalization

- Connection to OPE of lightray operator in conformal fiel
- Analytic calculation with CFT or amplitude methods
- Improved understanding of collinear limit in QCD
- Connection to transverse-momentum dependent physic
- Generalization to multipoint
- Generalization to pp, DIS
- Incorporation of tracks

$$l\sigma_{e^+e^- \to i,j+X} \frac{E_i E_j}{E_{\text{tot}}^2} \delta(\chi - \chi_{ij})$$

EEC: Two-particle angular correlation wighted by energies

Was a classic observable for e+e- colliders, drop out of experimental interest during the late stage of LEP **Resurgent of interests in recent years**

eld theory	Ali, Belitsky, C.H. Chang, H. Chen, Chicherin, Dixon, I
	A.J. Gao, J. Gao, Henn, Hofman, Hohenegger, G. Li, F
	Y.B. Li, M.X. Luo, Kologlu, Korchemsky, Kravchuk, Ma
CS	Maldacena, Mistlberger, Moult, Simmons-Duffin,
	Shtabovenko, Sokatchev, van Velzen, Vita, Vitev,
	Waalewijn, W. Wang, Z.P. Xing, K. Yan, T.Z. Yang, X.Y.
	Zhang, Zhiboedov, HXZ, Y.J. Zhu

, Ebert, H.T. Li, Makris,

Energy flow operator (lightray operator)

Tkachov; Korchemsky, Oderda, Sterman; Hofman, Maldacena; Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov

What we learn about QCD is mostly from the energy flow recorded by the detector. How do we characterize energy flow in QFT?

$$\mathbb{O}(\vec{n}) = \lim_{r \to \infty} r^{\Delta - J} \int_0^\infty dt \ O^{\mu_1 \dots \mu_J}(t, r\vec{n}) \bar{n}_{\mu_1} \dots \bar{n}_{\mu_J}$$

$$(J-1, \Delta - 1) \qquad (\Delta, J)$$

(dim, spin)

$$\mathbb{O}_{(J-1,\Delta-1)}(\vec{n}) \sim E_{\vec{n}}^{J-1}$$

An insertion of a lightray operator of dimension J-1 equivalent to weighting the cross section by E^{J-1} In this sense, correlation function of lightray operator is like taking the Mellin moment of calorimeter cell

- **local twist operator**

Special case: energy flow operator

$$\mathcal{E}_{(1,3)}(\vec{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt T^{\mu\nu}(t, r\vec{n}) \bar{n}_{\mu}$$

Conserved current Collinear safety

Lightray OPE without transverse spin

Hofman, Maldacena; Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov

Energy insertion within a jet corresponds to taking OPE limit of energy flow operator

dimension

collinear spin

Small angle expansion controlled by anomalous dimension of local twist operator.

Jet substructure in the language of OPE.

$$\lim_{\vec{n}_2 \to \vec{n}_1} \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) = \sum_i \theta_{12}^{\gamma_i} \mathbb{O}_i(\vec{n}_1)$$

$$1 + 1 = 0 + (J - 1)$$

$$3 + 3 = -\gamma_i + (\Delta - 1)$$

$$\mathcal{O}_{q}^{[J]} = \frac{1}{2^{J}} \bar{\psi} \gamma^{+} (iD^{+})^{J-1} \psi \qquad \hat{\gamma}(J) = \begin{pmatrix} \gamma_{qq}(J) & 2n_{f} \gamma_{qq}(J) \\ \gamma_{gq}(J) & \gamma_{gq}(J) \end{pmatrix} \\ \mathcal{O}_{g}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu+} (iD^{+})^{J-2} F_{a}^{\mu+} \qquad \hat{\gamma}(J) = \begin{pmatrix} \gamma_{qq}(J) & 2n_{f} \gamma_{qq}(J) \\ \gamma_{gq}(J) & \gamma_{gq}(J) \end{pmatrix} \\ \gamma_{ij} = -\int_{0}^{1} dx \, x^{J-1} P_{ij}(x)$$

equivalent language in terms of splitting functions

Konishi, Ukawa, Veneziano; Dixon, Moult, HXZ

J=3

Lightray OPE with transverse spin

H. Chen, Moult, HXZ; C.H. Chang, Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov

transverse spin-0

$$\mathcal{O}_{q}^{[J]} = \frac{1}{2^{J}} \bar{\psi} \gamma^{+} (iD^{+})^{J-1} \psi$$
$$\mathcal{O}_{g}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu+} (iD^{+})^{J-2} F_{a}^{\mu+}$$

 $\mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2) \sim C_q \mathbb{O}_q^{J=3}$

$$C_g \sim \frac{1}{\theta^2} \int_0^1 dx \, x^{J-1} (P_{qg}(x) + P_{gg}(x))$$

Transverse modulation can play the polarizer for gluon!

transverse
spin-2
$$\mathcal{O}_{\tilde{g}}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu+} (iD^{+})^{J-2} F_{a}^{\nu+} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$

$$+ \left[C_{g} \mathcal{O}_{g}^{J=3} + \left[C_{\tilde{g}} \mathcal{O}_{\tilde{g}}^{J=3} + \cdots \right] + \cdots \right] \left[(\vec{n}_{1}) \mathcal{E}(\vec{n}_{2}) | A_{\perp}^{\nu} \right]$$

$$\frac{e^{2}}{\mu, a} e^{2} e^{$$

QCD evolution of transverse spin 2 part

$$C_{\tilde{g}} \sim \frac{\cos(2\phi)}{\theta^2} \int_0^1 dx \, x^{J-1} (P_{q\tilde{g}}(x) + P_{g\tilde{g}}(x)) dx \, x^{J-1} (P_{q\tilde{g}}(x)) dx \, x^{J-$$

$$\widehat{\gamma}(J) = \begin{pmatrix} \gamma_{qq}(J) \\ \gamma_{gq}(J) \\ 0 \end{pmatrix}$$

$$2n_f \gamma_{qg}(J) \ \gamma_{gg}(J) \ 0$$

$$egin{array}{c} 0 \ 0 \ \gamma_{ ilde{g} ilde{g}}(J) \mathbf{1} \end{array}$$

$$\gamma_{\tilde{g}\tilde{g}}(J) = \frac{g^2}{(4\pi)^2} \left(4C_A \sum_{j=1}^J \frac{1}{j} - \beta_0 \right)$$
$$P_{\tilde{g}\tilde{g}}(z) = 2C_A \left(\frac{1}{[1-z]_+} - 1 \right) + \frac{\beta_0}{2} \delta(1-z)$$

Would be interesting to how how this kernel is connected to shower evolution

, HXZ $_{\tilde{j}}(x))$

density matrix I: collinear EEEC in squeeze limit

1-z $\rho = \begin{pmatrix} \operatorname{Sp}_{g^+ \to g^+} \\ \operatorname{Sp}_{g^+ \to \epsilon} \end{pmatrix}$

H. Chen, Moult, HXZ

$$Split_{-}^{g \to g_1 g_2, \text{ tree}}(1^+, 2^+) = \frac{1}{\sqrt{z(1-z)} \langle 12 \rangle},$$
$$Split_{-}^{g \to g_1 g_2, \text{ tree}}(1^-, 2^+) = \frac{-(1-z)^2}{\sqrt{z(1-z)} [12]}.$$

$$g^{+}g^{+}\operatorname{Sp}_{g^{+}\to g^{+}g^{+}}^{*} \operatorname{Sp}_{g^{+}\to g^{+}g^{+}} \operatorname{Sp}_{g^{+}\to g^{+}g^{+}}^{*}\operatorname{Sp}_{g^{+}\to g^{-}g^{+}}^{*} \operatorname{Sp}_{g^{+}\to g^{-}g^{+}}^{*} \operatorname{Sp}_{g^{+}\to g^{-}g^{+}}^{*} \operatorname{Sp}_{g^{+}\to g^{-}g^{+}}^{*} \operatorname{Sp}_{g^{+}\to g^{-}g^{+}}^{*}$$

density matrix I: collinear EEEC

Large cancellation between boson and fermion

Karlberg, Salam, Scyboz, Verheyen see also enhancement using Lund plane

density matrix II: Z + jet production

Instead of multi-prong jet substructure, one can also employ the hard scattering for generating the spin density matrix. Consider Z+jet: (the other process worth considering is 3jet production)

The matrix element for the off-diagonal term non vanishing

$$M_{1+2^- \to Z+g^+} = \frac{2ieg_s}{\sin 2\theta_w} (1 - 2Q_u \sin^2 \theta_w) \frac{\langle 2\mathbf{3} \rangle}{\langle 1g \rangle}$$
$$M_{1+2^- \to Z+g^-} = \frac{2ieg_s}{\sin 2\theta_w} (1 - 2Q_u \sin^2 \theta_w) \frac{[1\mathbf{3}][2]}{[1g][2]}$$

H. Chen, J. Gao, Moult, HXZ, in progress

- Quantum supposition of gluon reflected by spin correlation effects.
- Lightray OPE suitable for analysis of transverse spin structure within jet.
- EEEC and Z+jet as two examples providing non-trivial spin density matrix.
- Direct observation challenging, requires enhancement. b-tagging? charge?
- Interesting theory structure beyond collinear approximation. Connection to conformal block.