

ATLAS Higgs activities for Snowmass

Maria Mironova for the ATLAS collaboration Snowmass EF01 Working Group Meeting

Outline

- Summary of recent ATLAS Higgs physics activities for Snowmass
- Summary of VH(bb/cc) extrapolation <u>PUB note</u>
- Brief status update on Di-Higgs extrapolations for Snowmass

ATLAS VH(bb) and VH(cc) analysis

b/c

0 lepton

I lepton

2 lepton

- Search in VH production
- Three lepton channels defined by decay of vector boson
- Split in several analysis categories by kinematics and flavour tagging
- Flavour tagging: use DLI as a c-tagger, MV2cI0 as b-tagger
- VH(cc): cut-based analysis, fit to m_{cc} of the two leading jets
- VH(bb): fit to BDT discriminant
- Extrapolation of VH(bb) and VH(cc) analyses, as well as VH(bb/cc) combination
- Consider increased luminosity and CoM energy
- Reduce systematic uncertainties following expectations from CP groups

Maria Mironova 03/11/2021

VH(bb) extrapolation

- Extrapolation based on <u>published</u> Run 2VH(bb) analysis Fit to WH(bb) and ZH(bb) signal strengths:
- Uncertainties of 7% for ZH and 8% for WH
- Full Run 2 result: uncertainties of 25% for ZH and 26% for WH
- Leading uncertainties: Signal modelling, followed by flavour tagging

VH(bb) STXS extrapolation

ZΗ

WH

0.8

- Uncertainties vary between 18% in the low p_T bins and 7% in the high p_T bins
- Full Run 2 result: uncertainties between 30-60%

1.2

WH/ZH extrapolation

Stat. unc.

1.6

(Stat., Syst.)

1.8

ATLAS Preliminary
Projection from Run 2 data
VH, H \rightarrow b \overline{b} \sqrt{s} =14 TeV, 3000 fb⁻¹
• Exp. — Tot. unc.

VH(cc) results

- Extrapolation based on <u>public</u> Run 2VH(cc) analysis
- Expected upper limit on VH(cc) signal strength of 6.4 x SM and $|\kappa_c|$ < 3.0
- Leading uncertainties from Z+jets modelling and flavour tagging

VH(bb/cc) combination

- Given the similarity of the VH(bb) and VH(cc) analyses it is straightforward to perform a simple statistical combination
- At HL-LHC expect $\mu_{VH(bb)} = 1.00 \pm 0.06$ and $\mu_{VH(cc)} = 1.00 \pm 3.20$
- Expected constraint of $|\kappa_c/\kappa_b| < 2.74$ at 95% CL

Likelihood scan of κ_c and κ_b **ATLAS** Preliminary Projection from Run 2 data \sqrt{s} = 14 TeV, 3000 fb⁻¹ $VH(\rightarrow b\overline{b}, c\overline{c})$ 4 Expected 68% CL Expected 95% CL 0.5 κ_{b}

HH(bbyy) extrapolation

- Previous extrapolation of bbyy channel done in dedicated extrapolation analysis (<u>PUB note</u>)
- ~2.0 σ for the SM HH signal, κ_{λ} constrained at $I\sigma$ to [-0.2, 2.5]
- Recent HH(bbyy) results with full Run 2 dataset (139ifb) released as Moriond 2021 CONF note
- Updated extrapolation based on these results in progress, following the usual ATLAS upgrade physics recommendations
- Improved κ_{λ} precision expected with respect to previous extrapolation, thanks to updated analysis strategy exploiting event categories based on di-Higgs mass
- → Public results expected by the end of the year

Previous HH extrapolation

Current HH(bbyy) analysis

Summary

- Summary of recent ATLAS Higgs physics activities for Snowmass
- Summary of VH(bb/cc) extrapolation <u>PUB note</u>
- → Extrapolation of Run 2VH(bb) and VH(cc) results and combination
- $\rightarrow \mu_{VH(bb)} = 1.00 \pm 0.06$ and $\mu_{VH(cc)} = 1.00 \pm 3.20$, $|\kappa_c/\kappa_b| < 2.74$ at 95% CL
- Brief status update on Di-Higgs extrapolations for Snowmass
- \rightarrow Update on HH(bbyy) prospects expected by the end of the year
- → Other extrapolation activities ongoing, stay tuned!

any questions? Maria Mironova 03/11/2021

Extrapolation setup

Step I: Scale MC samples from 139 fb⁻¹ to 3000 fb⁻¹

Step 2: Account for CoM increase 13 TeV → 14 TeV

Apply process-dependent (pTV inclusive) numbers

Step 3:Add systematic uncertainties

- Scale experimental uncertainties following CP group recommendations
- Reduce signal and background modelling uncertainties to 1/2
- Neglect uncertainties related to MC statistics

Step 4: Perform fits on pre-fit Asimov dataset

Parameters of interest:

- VH(bb): signal strengths of WH(bb) and ZH(bb), 5 POI STXS fit
- VH(cc):VH(cc) signal strength, κ_c
- Combination: $\mu_{VH(bb)}$ and $\mu_{VH(cc)}$, κ_c/κ_b

CoM scale factors	Scale factor
WH	1.10
qqZH	1.11
ggZH	1.18
ttbar, ggZZ	1.16
qqVV, V+jets, single top	1.10

Systematics scale fa	actors	Scale factor
Experimental	MET	0.5
	Lepton	1
	Jet	1
	Luminosity	0.58
Flavour tagging	$c/b/\tau$ – jets	0.5
	l-jets (MV2c10)	0.5
	I-jets (DLI)	I
Modelling	Signal	0.5
	Background	0.5
MC stat	MC statistics	0
	Truth-tagging	0

Maria Mironova 03/11/2021