New results from LHCb

Mikhail Mikhasenko on behalf of LHCb collaboration

Excellence Cluster ORIGINS, Munich, Germany BMBF: HISKP, Bonn University, Germany Joint Physics Analysis Center

> October 25st, 2021 Showmass RF7

Conventional hadrons

 $\Rightarrow \sim 10$ classes (+excitations) of mesons and ~ 20 classes (+excitations) of baryons

Growing evidence of exotic states

- All but one with hidden flavor: $(c\bar{c})$ or (bb)
- Complex discovery, controversial interpretation

States

 $X_0(2900), X_1(2900)$ [22,23]

 $\chi_{c1}(3872)$ [7]

 $Z_c(3900)$ [24], $Z_c(4020)$ [25,26], $Z_c(4050)$ [27], X(4100) [28], $Z_c(4200)$ [29], $Z_c(4430)$ [30,31,32,33], $R_{c0}(4240)$ [32]

 $Z_{cs}(3985)$ [34], $Z_{cs}(4000)$, $Z_{cs}(4220)$ [35]

 $\chi_{c1}(4140)$ [36,37,38,39], $\chi_{c1}(4274)$, $\chi_{c0}(4500)$, $\chi_{c0}(4700)$ [39] X(4630), X(4685) [35], X(4740) [40]

X(6900) [15]

 $Z_b(10610), Z_b(10650)$ [41]

 $P_c(4312)$ [42], $P_c(4380)$ [43], $P_c(4440)$, $P_c(4457)$ [42], $P_c(4357)$ [44]

 $P_{cs}(4459)$ [45]

Milestones: 1) | XYZ

Meet $T_{QQ'}$: new class

"hypothetical" before August 2021

- Ground state: $(QQ'\bar{u}\bar{d})$, $J^P = 1^+$, isospin 0
- Exists?
 - T_{bb}: most theorists believe that it exists.
 - $ightharpoonup T_{cc}^+$: no consensus
- in experiment: it does not exist before observed

Mass of T_{cc}^+ wrt $D^{*0}D^+$

Observation of T_{cc}^+

[LHCb, arXiv:2109.01038]

[display]

Selection of T_{cc}^+ in prompt decays to $D^0D^0\pi^+$

- Select $D^0D^0\pi^+$ candidates from primary vertex with detached $D^0 \to K^-\pi^+$
- Require detached $K^-\pi^+$ with high p_T
- Require good quality of tracks, vertexes, and particle ids.
- Ensure no K/π candidates belong to one track (clones)
- Ensure no reflections via mis-ID
- Subtract fake-D background using 2d fit to $(m_{K\pi} \times m_{K\pi})$

The first hint of the signal: $D^0D^0\pi^+$ and $D^0\bar{D}^0\pi^+$

Spectrum fit and significance

Breit-Wigner model

Too naive model

BW signal $[(DD)_S \pi P$ -wave] + ph.sp. background

- significance $> 10\sigma$
- peak below (4.3σ)

Parameter	varue	
N	117 ± 16	
$\delta m_{ m BW}$ -	-273 ± 61	keV/c^2
Γ_{BW}	410 ± 165	keV

Fundamental properties? Need better model (D^*D threshold)

Extracting T_{cc}^+ parameters

[LHCb, arXiv:2109.01056]

T_{cc}^+ decay amplitude

Model assumptions:

- $J^P = 1^+$: S-wave decay to D^*D
- T_{cc}^+ is an isoscalar: $|T_{cc}^+\rangle_{I=0} = \left\{\left|D^{*0}D^+\right\rangle \left|D^{*+}D^0\right\rangle\right\}/\sqrt{2}$
- No isospin violation in couplings to $D^{*+}D^0$ and $D^{*0}D^+$

T_{cc}^+ self-energy and hadronic reaction amplitude

Three-body unitarity [MM et al. (JPAC), JHEP 08 (2019) 080]

Dynamic amplitude of $D^*D \rightarrow D^*D$ scattering:

$$T_{2\times 2}(s) = K + K \Sigma K + K \Sigma K \Sigma K + \dots$$

where K is the isoscalar potential:

$$K = \frac{1}{m^2 - s} \begin{pmatrix} g \cdot g & -g \cdot g \\ -g \cdot g & g \cdot g \end{pmatrix},$$

and Σ is the loop function:

$$\Sigma(s) = [D^*D \to DD\pi(\gamma) \to D^*D]$$
$$= \left[\sim + \sim \right].$$

$$\operatorname{Im}\left[\begin{pmatrix} \mathbf{g} \\ -\mathbf{g} \end{pmatrix}^{\dagger} \Sigma(s) \begin{pmatrix} \mathbf{g} \\ -\mathbf{g} \end{pmatrix}\right] = \rho(s)$$

 D^* decays are accounted for.

Unitarity and Analyticity principles are fulfilled.

Model parameters: $|g|^2$ and m^2 – bare mass and coupling

Fit to the spectrum

Unitarized model

- The signal shape does not depend on |g| for $|g| \to \infty$.
- The lower limit: $|g| > 7.7(6.2) \, \mathrm{GeV}$ at $90(95)\% \, \mathrm{CL}$
- δm_U is the only parameter

Parameter	Value
N	186 ± 24
$\delta m_{ m U}$ -	$-359 \pm 40 \text{keV}/c^2$
g	$3 \times 10^4 \text{GeV}$ (fixed

Excellent agreement with the data. Reaction amplitude is fully fixed.

Predicted mass spectrum

resolution removed

Visible

characteristics:

- Peak position: $-359 \pm 40 \, \mathrm{keV}$ (The most precise ever wrt to
- the threshold)

 FWHM:
- 47.8 \pm 1.9 keV,
- Lifetime: $au pprox 10^{-20} s$. (Unprecedented for exotic hadrons)

- Nearly-isolated resonance below $D^{*+}D^0$ threshold
- Long tail with cusps on $D^{*+}D^0$ and $D^{*0}D^+$ thresholds

Fundamental resonance parameters

[interactive]

Mass and width - position of the complex pole of the reaction amplitude

 Analytic continuation is non-trivial due to three-body decays [MM et al. (JPAC), PRD 98 (2018) 096021]

The pole parameters:

$$\delta m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \,\mathrm{keV}$$

$$\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \,\mathrm{keV} \,.$$

Partially-reconstructed decays

Independent selection of the prompt D^0D^0 and D^+D^0 events.

- Lineshape of D^0D^0 and D^+D^0 spectra are predicted well by the model
- ullet Relative yeilds of D^0D^0 and D^0D^+ is in good agreement with the model predictions

Isospin partners?

What if the T_{cc}^+ is a part of the isospin-1 triplet

 $T_{cc}^{0}:$ $cc\bar{d}\bar{d}$

 $T_{cc}^{+}:$ $cc\bar{u}\bar{d}$

 $T_{cc}^{++}: cc\bar{u}\bar{u} \rightarrow D^+D^{*+}$

The partners should be roughly of the same mass, more precise

$$m_{T_{cc}^{++}} - (m_{D^+} + m_{D^{*+}}) = 2.7 \pm 1.3 \, {\sf MeV} ({\sf using mass of } \Sigma_c^0, \Sigma_c^+, \Sigma_c^+ +)$$

No indication of I = 1 family.

Interpretation

Two extreme spatial configurations

"Molecule" configuration:

- two mesons are well separated,
- bound by forces similarly to el.mag. van der Waals,
- entirely coupled to $D^{*+}D^0$,
- lifetime is determined by D^{*+} ,
- ? spatially-extended object.

"Atomic" configuration:

- genuine QCD state,
- bound by naked color forces
- lifetime low limit is set by $\tau(D^{*0})$, depends on how much it couples to continuum,
- ? typical hadronic size of 1 fm.

Effective range and Weinberg compositeness

Non-relativistic expansion near the threshold:

$$\mathcal{A}_{\mathsf{NR}} = \frac{1}{\mathsf{a}} + r\frac{\mathsf{k}^2}{2} + O(\mathsf{k}^4)$$

Scattering length, a

- a characteristic size of the state
- a > 0: moderate interaction
- a < 0: strong attraction forming a bound state

Effective range, r

- is the second order correction
- ! always positive in potential scattering

[Landau-Smorodinsky(1944), Esposito(2021)]

Weinberg compositeness:
$$1-Z=\sqrt{\frac{1}{1+2r/\Re a}}$$

$$1 - Z = 1$$
: composite (molecule) $1 - Z = 0$ elementary

- T_{cc}^+ : $a = (-7.16 \pm 0.51) + i(1.85 \pm 0.28)$ fm
- T_{cc}^+ : r is negative in the model: $0 < -r < 11.9(16.9) \,\mathrm{fm}$ at $90(95) \,\% \,\mathrm{CL}$
- T_{cc}^+ : 1 Z > 0.48(0.42): not-entirely elementary, well

Comparison to the deuteron

Deuteron [Garcon, Van Orden(2001)]

- Presumably molecule
- $1-Z\approx 1$
- $R_{\text{charge}} = 2.1 \, \text{fm}$
- $R_{\text{matter}} = 1.9 \, \text{fm}$
- $a = -5.42 \, \text{fm}$
- $r = 1.75 \, \text{fm}$

Tetraquark T_{cc}^+ [LHCb, arXiv:2109.01056]

[compact cc core]

 $[\bar{u}\bar{d} \text{ cloud}]$

- Expected to be atomic
- $1 Z \ge 0.48$ at 90% CL
- $R_{\text{charge}} = ??$
- $R_{\text{matter}} = ??$
- $a = -7.16 \, \text{fm}$
- $r > -11.9 \, \text{fm}$ at 90% CL

17 / 24

Do other hadrons of the (QQ'qq') family exist?

- Exists? Now, we are sure they do, all of them.
- Can be observed? Certainly some. Some might be too broad.
- $T_{bb}^{-}(bb\bar{u}\bar{d})$ are likely stable wrt QCD
- $T_{cb}^0(cb\bar{u}\bar{d})$ is either stable or almost, like T_{cc}^+
- ? Radial and orbital excitations of isoscalar T_{QQ}^*
- ? Isovector T_{QQ} and its family

[Karliner, Rosner (2017)]

Exotic hadrons in the future plans of LHCb

Major LHCb upgrade during LS2 is nearly finished

Exotic hadrons in the future plans of LHCb

Major LHCb upgrade during LS2 is nearly finished

 P_c^+ T_{cc}^+

Run 1 (2011-2015): $+3 \, \text{fb}^{-1} \, \text{@7 TeV} \sim 100 \sim 60$

+Run 2 (2015-2019): $+6 \, \text{fb}^{-1} \, \text{@} 13 \, \text{TeV} \sim 1.5 k \sim 200$

+Run 3 (2022-2025):

 $+\text{Run 4 (2027-2030)}: +40 \,\text{fb}^{-1} \,\text{@14 TeV} > 8k > 1k$

Run 3 is about to start (2022):

- ullet Same energy, but imes 4 intensity: 1.5
 ightarrow 5.5 PV per imes-ing
- Uncertainty due to new tracking system, new software trigger

Observation of T_{cb}^0 , T_{bb}^-

Based on Steve Blusk estimation [Tcc & beyond workshop]

$$N_{\text{signal}} = \overbrace{\mathcal{L}}^{\text{luminosity}} \times \underbrace{\sigma_{\text{prod}}}_{\text{cross section}} \times \overbrace{\operatorname{Br}}^{T_{QQ} o B(D)B(D)} \times \prod_{B/D \text{ decays}} \underbrace{\operatorname{efficiency}}_{B/D \text{ decays}}$$

Observation of T_{cb}^0 , T_{bb}^-

Based on Steve Blusk estimation [Tcc & beyond workshop]

$$N_{\text{signal}} = \underbrace{\mathcal{L}}_{\text{cross section}} \times \underbrace{\sigma_{\text{prod}}}_{\text{cross section}} \times \underbrace{F_{QQ} \rightarrow B(D)B(D)}_{Br} \times \prod_{B/D \text{ decays}} \underbrace{\mathsf{efficiency}}_{efficiency}$$

$$\varepsilon(D^+)\varepsilon(D^{*+}) \approx 0.08$$

 $\varepsilon(D^0 \to K^-\pi^+) \approx 0.17$

$$\epsilon(B^-) \approx 0.1$$

Observation of T_{ch}^0 , T_{bh}^-

Based on Steve Blusk estimation [Tcc & beyond workshop]

$$\textit{N}_{\text{signal}} = \overbrace{\mathcal{L}}^{\text{luminosity}} \times \underbrace{\sigma_{\text{prod}}}_{\text{cross section}} \times \overbrace{\text{Br}}^{\textit{T}_{\textit{QQ}} \rightarrow \textit{B(D)}\textit{B(D)}}_{\text{Br}} \times \prod_{\textit{B/D decays}} \underbrace{\text{efficiency}}_{\textit{E} \cap \textit{D} \text{ decays}} \times \underbrace{\varepsilon}_{\textit{E} \cap \textit{D} \text{ decays}}^{\text{efficiency}}$$

$$\varepsilon(D^+)\varepsilon(D^{*+}) \approx 0.08$$

 $\varepsilon(D^0 \to K^-\pi^+) \approx 0.17$

$$\epsilon(B^-) \approx 0.1$$

Observing T_{cb}^0

- Cross-section: $\sigma \approx 100 \, \mathrm{nb}$ [Ali et al., PLB785 (2018) 605]
- Rough expectations with 50 fb⁻¹ (by 2030):
 - Strong decay

$$N_{\text{signal}}(T_{cb}^0 o B^- D^+) \sim 300$$

Weak decay

$$N_{
m signal}(T_{cb}^0 o J/\psi D^+K^-)\sim {7k}$$

- Observing T_{bb}^-
- Cross-section: $\sigma \approx 1 \, \text{nb}$
- lifetime: $\tau \approx 0.6 \, \mathrm{ps} 7.6 \mathrm{ps}$ [Agaev et al., EPJA 56, 177 (2020)] [Hernandez et al., PLB800, 135073 (2020)]]
- Rough expectations with 50 fb⁻¹ (by 2030):
- Weak decay $N_{\rm signal}(T_{bb}^{0} \to B_{c}^{-} D^{+} K^{-}) \sim 0.2$

Summary

- T_{cc}^+ is the first representee of $(QQ'\bar{q}\bar{q}')$ hadrons
- ullet Undoubted proof of hadrons beyond conventional $(qar{q})$ and (qqq) scheme
- Almost stable with respect to the strong interaction

Summary

- T_{cc}^+ is the first representee of $(QQ'\bar{q}\bar{q}')$ hadrons
- ullet Undoubted proof of hadrons beyond conventional $(qar{q})$ and (qqq) scheme
- Almost stable with respect to the strong interaction

Outlook

- Model assumption are consistent with the data, but need to be proven:
 - Accurate accouning for three-body effects
 - Dalitz-plot analysis and test of J^P
- Analysis of the production cross sections

Remarks

- Two papers are submitted to a good journal
- Wide interest in media
 - > 150 media citations in Russian
 - ▶ > 20 in English
 - a few in German,
 Brazilian, Hebrew,
 Vietnamese, Turkish, . . .
- Publicly available code to build the model in Julia

[QuantaMagazine [link]]

New hadrons observed at LHCb

Thank you for the attention

Width saturation

Complex plane

- \bullet The D^* width gives the limit to T_{cc}^+ width, $<\Gamma_{T_{cc}^+}^{(\rm max)}$
- Parameter |g| sets the value in the range $[0, \Gamma_{T^{\pm}}^{(\text{max})}]$
- The fit prefers the limit value

Cross-checks

- Different years (2011-2018)
- Different data-taking conditions (magner polarity)
- No signal when using fake D^0

p_t spectrum for T_{cc}^+

Multiplicity dependence of T_{cc}^+ yeild

Surprisingly similar to uncorrelated D^0D^0 production (DPS)

Two models

Naive model is of similar quality but yeilds incorrect parameters

The reason: background and resolution. Confirmed by MC studies.

Lattice QCD

First-principles theoretical (numerical) approach to QCD.

Several calculations are done. The situation is puzzling

- HAL QCD Collaboration (2014): attraction but no binding
- Hadron Spectrum Collaboration (2017):
 no binding
- Junnarkar et al. (2018): $-23 \pm 11 \,\text{MeV}$ binding

[Junnarkar et al. (2018)]

Does T_{cc}^+ decay via off-shell D^* ?

- Peak at high mass requires D* propagator
- P-wave behavior on the left limit
- S-wave behavior on the right limit

Non-relativistic quark model. T_{cc}^+ wave function

• Solve Heisenberg equation. Interaction between every pair of quarks

$$H = \sum_{i} (m_i + \frac{p^2}{2m_i}) - \frac{3}{16} \sum_{i < j} v_{ij}(r_{ij}), \text{ with } r_{ij} = |\vec{r}_i - \vec{r}_j|$$

• Different variants for potential are used ("Bhaduri" and "Grenoble")

$$v_{ij}^{(Bhaduri)}(r_{ij}) = \tilde{\lambda}_{i}^{C} \tilde{\lambda}_{j}^{C} \left[\Lambda - \underbrace{\frac{\kappa}{r}}_{Columnb} + \underbrace{\frac{\lambda r}{confinement}}_{confinement} + \underbrace{\frac{\kappa}{m_{i}m_{j}}}_{spin-spin interaction} \underbrace{\frac{exp(-r/r_{0})}{rr_{0}^{2}} \sigma_{i}\sigma_{j}}_{spin-spin interaction} \right],$$

with parameters adjusted by fit to conv. states.

- \bullet T_{bb}^- is bound well below the lowest threshold. Stable (bb) in triplet, $J_{(bb)}=1$.
- T_{cc}^+ is near the threshold: (cc) in (sixt.), $J_{(cc)}=0,1$.
 - $\delta m \in \{-1, 0, 11, 13\}$ MeV [Semay, Silvestre-Brac (1993)]
 - $\delta m \in \{-2.7, -0.6\} \text{ MeV [Janc, Rosina (2004)]}$

Distributions of QQ component

[[Janc, Rosina (2004)]]

- Matter w.f.: ρ_{QQ} shows how close QQ together
- Color w.f.: $3 \otimes 3 = \overline{3} \oplus 6$
 - ightharpoonup compact (QQ) is in triplet $\sim ar{Q}$.
 - ► (Meson_Q Meson_Q) has QQ in sixtet

 T_{bb}^+ looks atomic like Λ_b ,

while T_{cc}^+ has large $D\bar{D}^*$ component

Distributions of QQ component

[[Janc, Rosina (2004)]]

- Matter w.f.: ρ_{QQ} shows how close QQ together
- Color w.f.: $3 \otimes 3 = \overline{3} \oplus 6$
 - ightharpoonup compact (QQ) is in triplet $\sim \bar{Q}$.
 - ► (Meson_Q Meson_Q) has QQ in sixtet

 T_{bb}^+ looks atomic like Λ_b ,

while T_{cc}^+ has large $D\bar{D}^*$ component