C³, a "Cool" Route to the Higgs Boson and Beyond

Emilio Nanni, Caterina Vernieri Thanks to Many for Contributions / Discussions **September 29, 2021**

Acknowledgements

Snowmass LOI

C³: An Advanced Concept for a High Energy e⁺e⁻ Linear Collider

T. L. Barklow, M. Breidenbach, C. Burkhart, N. Graf, Z. Li, M. Kemp, T. Markiewicz, E. A. Nanni,[†] M. H. Nasr, M. Oriunno, E. Paterson, M. Peskin, N. Phinney, T. O. Raubenheimer, S. G. Tantawi,⁺ C. Vernieri, B. Weatherford SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025

> J. B. Rosenzweig University of California, Los Angeles, Los Angeles, CA 90095, USA

B. E. Carlsten, F. Krawczyk, J. Lewellan, E. I. Simakov Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545

> B. Spataro INFN-LNF, Frascati, Rome 00044, Italy

T. Abe KEK, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan

> V. Shiltsev, N. A. Solyak Fermi National Accelerator Laboratory, Batavia IL 60510-5011

> > A. White University of Texas, Arlington

Additional Contributors: Dennis Palmer Emma Snively Cici Hanna Charlotte Whener Annika Gabriel Gordon Bowden Andy Haase Julian Merrick Bob Conely

Where are we?

(some) Higgs boson couplings measured with O(5-10)% precision

(some) Higgs boson couplings measured with O(5-10)% precision HL-LHC as a Higgs factory: 170M Higgs bosons - 120k HH pairs for 3/ab Phase-2 HL-LHC detector upgrades are being built

Wish list beyond HL-LHC:

- **1. Establish Yukawa couplings to light flavor** \implies **needs precision**
- 2. Establish self-coupling \implies needs high energy

Why e+e-?

- Initial state well defined & polarization \implies High-precision measurements •

Higgs bosons appear in 1 in 100 events \implies Clean experimental environment and trigger-less readout

Higgs at e+e-

- Above 500 GeV
 - Hvv dominates
 - ttH opens up
 - HH production accessible with ZHH

EF02 - September, 29 2021

Linear vs. Circular

- **Linear** e⁺e⁻ colliders: ILC, C³, CLIC
 - Reach higher energies (~ TeV), and can use polarized beams
 - Relatively low radiation
 - Collisions in bunch trains
- **Circular** e⁺e⁻ colliders: FCC-ee, CEPC
 - Highest luminosity collider at Z/WW/ Zh
 - limited by synchrotron radiation above 350–400 GeV
 - Beam continues to circulate after 0 collision

Various proposals ...

250/500 GeV

Higgs couplings at future colliders

- Coupling to W and Z would be measured with an accuracy of few 0.1%
- Coupling to charm and b quarks could be measured with an accuracy of ~1% at future e+e- machines
- Couplings to $\mu/\gamma/Z\gamma$ benefit the most from the large dataset available at HL-LHC and not really improved at future colliders

arXiv:1910.11775, arXiv:1905.03764 CERN-LPCC-2018-04

EF02 - September, 29 2021

Higgs couplings at future colliders

- Coupling to W and Z would be measured • with an accuracy of few 0.1%
- Coupling to charm and b quarks could be measured with an accuracy of ~1% at future e+e- machines
- Couplings to $\mu/\gamma/Z\gamma$ benefit the most from the large dataset available at HL-LHC and not really improved at future colliders

Complementarity between HL-LHC and future colliders (depending on their timeline) will be the key to explore the Higgs sector

arXiv:1910.11775,arXiv:1905.03764 CERN-LPCC-2018-04

An alternative to ILC for a linear e+e- collider...

- Cool Copper Collider

- C³ is based on a new SLAC technology
 - dramatically improving efficiency and breakdown rate
- distributed power to each cavity from a common RF manifold
- operation at cryogenic temperatures (LN2 ~80K)
- robust operations at high gradient: $120 \sim MeV/m$
- scalable to multi-TeV operation

E.Nanni's EF workshop restart

Why 550 GeV?

We propose **250** GeV with a relatively inexpensive upgrade to **550** GeV on the same 8 km footprint.

- 550 GeV will offer an orthogonal dataset to cross-check a deviation from the SM predictions observed at 250 GeV
- O(20%) precision on the Higgs selfcoupling would allow to exclude/ demonstrate at 5σ models of electroweak baryogenesis
- From 500 to 550 GeV a factor 2 improvement to the top-Yukawa coupling

Collider Luminosity Polarization g_{HZZ} (%) g_{HWW} (%) g_{Hbb} (%) g_{Hcc} (%) g_{Hgg} (%) $g_{H\tau\tau}$ (%) $g_{H\mu\mu}$ (%) $g_{H\gamma\gamma}$ (%) $g_{HZ\gamma}$ (%) g_{Htt} (%) g_{HHH} (%) Γ_H (%)

	HL-LHC	C^3 /ILC 250 GeV	C^3 /ILC 500 Ge
	3 ab^{-1} in 10 yrs	2 ab^{-1} in 10 yrs	$+ 4 \text{ ab}^{-1} \text{ in } 10 \text{ y}$
1	_	$\mathcal{P}_{e^+} = 30\%~(0\%)$	$\mathcal{P}_{e^+} = 30\% \ (0\%)$
	3.2	0.38(0.40)	0.20(0.21)
	2.9	0.38(0.40)	0.20(0.20)
	4.9	$0.80 \ (0.85)$	0.43(0.44)
	_	1.8(1.8)	1.1(1.1)
	2.3	1.6(1.7)	0.92(0.93)
	3.1	0.95(1.0)	$0.64 \ (0.65)$
	3.1	4.0(4.0)	3.8(3.8)
	3.3	1.1(1.1)	0.97(0.97)
	11.	8.9(8.9)	6.5(6.8)
	3.5	—	$3.0 (3.0)^*$
	50	49(49)	22(22)
	5	1.3(1.4)	0.70(0.70)

One note on polarization

- There are extensive comparisons between the FCCee plan and the C³/ILC runs that show they are rather compatible to study the Higgs Boson
- When analyzing Higgs couplings with SMEFT, 2 • ab⁻¹ of polarized running is essentially equivale to 5 ab⁻¹ of unpolarized running.
 - Electron polarization is essential for this. Bu • there is almost no difference in the expectati with and without positron polarization.
 - Positron polarization allows more cross-chec • of systematic errors. We may wish to add it later.
 - Positron polarization brings a large advantag • multi-TeV running, where the most importan cross sections are from $e_Le_R^+$

arXiv:1708.08912 arXiv:1801.02840 SLAC (

		2/ab-250	+4/ab-500	5/ab-250	+ 1.5/ab
	$\operatorname{coupling}$	pol.	pol.	unpol.	unpo
r	HZZ	0.50	0.35	0.41	0.34
2	HWW	0.50	0.35	0.42	0.35
nt	Hbb	0.99	0.59	0.72	0.62
	H au au	1.1	0.75	0.81	0.71
ut -	Hgg	1.6	0.96	1.1	0.96
ion	Hcc	1.8	1.2	1.2	1.1
ЮП	$H\gamma\gamma$	1.1	1.0	1.0	1.0
	$H\gamma Z$	9.1	6.6	9.5	8.1
cks	$H\mu\mu$	4.0	3.8	3.8	3.7
	Htt	_	6.3	_	-
	HHH	_	27	-	-
•	Γ_{tot}	2.3	1.6	1.6	1.4
ge in	Γ_{inv}	0.36	0.32	0.34	0.30
nt	Γ_{other}	1.6	1.2	1.1	0.94
		-			

C³ timeline

	2019-2024	2025-2034
Accelerator		
Demo proposal		
Demo test		
CDR preparation		
TDR preparation		
Industrialization		
TDR review		
Construction		
Commissioning		
Physics $@$ 250 GeV		
RF Upgrade		
Physics $@$ 550 GeV		
Multi-TeV Upg.		
Detector		
LOIs		
TDR		
Construction		
Commissioning		

Physics requirements for tracking detectors

- **ZH process**: Higgs recoil reconstructed from $Z \rightarrow \mu\mu$
 - Drives requirement on charged track momentum and jet 0 resolutions
 - Sets need for high field magnets and high precision / low Ο mass trackers
 - Bunch time structure allows high precision trackers with 0 very low X₀ at linear e⁺e⁻ colliders
- **Higgs** → **bb/cc decays**: Flavor tagging & quark charge tagging at unprecedented level
 - Drives requirement on charged track impact parameter 0 resolution → **low mass trackers near IP**
 - <0.3% X0 per layer (ideally 0.1% X₀) for vertex detector

arXiv:2003.01116

Need new generation of ultra low mass vertex detectors with dedicated sensor designs

Detector Design Requirements

ILC timing structure: Fraction of a percent duty cycle

- Power pulsing possible, significantly reduce hea
 - Factor of 50-100 power saving for FE analog power Ο
- Tracking detectors **don't need active cooling**
 - Significantly reduction for the material budget
 - **Triggerless readout** is the baseline

C³ time structure is compatible with SiD-like detector overall design and ongoing optimizations.

ILC timing structure

1 ms long bunch trains at 5 Hz 2820 bunches per train 308ns spacing

,	
at	load

1				
Collider		ILC	CCC	
	σ_z	$300 \ \mu m$	$100 \ \mu m$	
	eta_x	8.0 mm	$13 \mathrm{mm}$	
	eta_y	$0.41 \mathrm{mm}$	$0.1 \mathrm{mm}$	
	ϵ_x	500 nm/rad	900 nm/rad	
	ϵ_y	35 nm/rad	20 nm/rad	
	N bunches	1312	133	
	Repetition rate	$5~\mathrm{Hz}$	$120~\mathrm{Hz}$	
	Crossing angle	0.014	0.020 Tot	
	Crab angle	0.014/2	0.020/2	

Demonstration concept

- We are proposing a demonstration facility to carry out a "string test" of three C³ cryomodules. ۲ This step is included in our timeline. The cost is O(100) M\$. •
- - This demonstration directly benefits development of compact FELs for photon science. •
- The other elements needed for a linear collider the sources, damping rings, and beam delivery • system - already have mature designs created for the ILC and CLIC.
 - Our current baseline uses these directly although we will look for further cost-optimizations for • the specific needs of the C³
- If the machine is constructed outward from the collision point, it may be possible to do physics at • an intermediate stage in the construction at 91 GeV.
 - We do not consider this a part of our baseline, but we mention the possibility in case there is • community interest for a Giga-Z (2 yrs) program.

- - **Higgs physics run by 2040**
 - Possibly, a US-hosted facility •
- C³ can be quickly and inexpensively upgraded to 550 GeV •
- C³ can be extended to a 3 TeV e⁺e⁻ collider with capabilities similar to CLIC •
- With new ideas, the C³ lab can provide physics at 10 TeV and beyond •

C³ can provide a rapid route to precision Higgs physics with a compact 8 km footprint

Extra

Breakthrough in the Performance of RF Accelerators

- RF power coupled to each cell no on-axis coupling
- Full system design requires modern virtual prototyping

- Optimization of cell for efficiency (shunt impedance) $R_{\rm s} = G^2 / P \left[M\Omega / m \right]$
- Control peak surface electric and magnetic fields
- Key to high gradient operation

EF02 - September, 29 2021 Tantawi, Sami, et al. "Design and demonstration of a distributed-coupling linear accelerator structure." Physical Review Accelerators and Beams 23.9 (2020): 092001.

Electric field magnitude produced when RF manifold feeds alternating cells equally

The Higgs self-coupling at future colliders

These values are combined with an independent determination of the self-coupling with uncertainty 50% from the HL-LHC.

single- H	HH	combined
100-200%	50%	50%
49%		49%
49%	—	49%
38%	27%	22%
36%	10%	10%
50%	_	50%
49%	36%	29%
49%	9%	9%
33%	—	33%
24%	—	24%
-	15%	15%
-	5%	5%

Self-coupling at e+e-

The self-coupling could be determined also through single Higgs processes

- Relative enhancement of the $e+e- \rightarrow ZH$ crosssection and the $H \rightarrow W+W-$ partial width
- Need multiple Q² to identify the effects due to the self-coupling

EF02 - September, 29 2021

Higgs at e+e-

Upper Limits / Precision on κ_e

- Circular lepton colliders FCC-ee provide the highest luminosities at lower centre-of-mass energies
- Unique opportunity to measure the Higgs boson coupling to electrons through the resonant production process $e + e - \rightarrow H$ at $\sqrt{s} = 125$ GeV
- FCC-ee running at H pole-mass with 20/ab would • produce O(30.000) H's reaching SM sensitivity
 - Requires control of beam-energy spread

