
DR
AFT

DAQProcess/Module network layer changes

Kurt Biery
22 Sep 2021
DAQ Parallel Session, Collaboration Meeting

• a report on work-in-progress

Introduction
Changes are being investigated/planned in the
communication between DAQModules (DAQProcesses).
Recall that in releases <= v2.8.0, most modules only knew
about Queues; inter-process (socket) communication was
handled by special-purpose modules that took care of
serializing messages and sending them over the network.

22-Sep-2021 DAQ Network Layer | KAB2

For reference, a diagram that
shows the listrev demo.

v2.8.0 and earlier…

22-Sep-2021 DAQ Network Layer | KAB3

As example,
DataRequest

messages

Reasons for change…
Reasons for updating the model for inter-module communication
include the following:
• Lots of QueueToNetwork/NetworkToQueue module pairs adds

complication to the configuration (and uses resources at runtime)
- the generation of those config snippets could be automated, but still…

• The Q2N/N2Q model doesn’t have a way to alert the user modules of
errors

• The intermediate Q2N/N2Q modules make clean Start and Stop
transitions incrementally more difficult

• It’s hard to imagine how graceful failover might happen if we need to
destroy/construct Q2N/N2Q pairs as part of that

22-Sep-2021 DAQ Network Layer | KAB4

Desirable features for an updated model
As little as possible information needs to be known statically. For the
request/reply part: the entity that receives a request only becomes aware
of a requester when a request comes in. It doesn’t need to know
anything about who potential requesters are upfront. Very valuable for
many recovery scenarios.
We limit the socket connections to a reasonable number, in some cases
focusing on applications and not the underlying building blocks. One area
where this may be valuable is within readout applications. We expect that
it will be valuable for event builders to not know all of the details of the
sub-structure within readout apps.
Logical naming of endpoints/ports
• A proposal: <partition identifier>:<communication channel

type>:<destination identifier>, eg. Part3:DataRequest:RU-55

22-Sep-2021 DAQ Network Layer | KAB5

Lists of questions to be answered
Examples from Phil:
• How do we handle errors? Which modules get notified?
• What to do if downstream is blocked?
• Can we drop messages, and if so, whether/how to signal

that to the sender/receiver?
• How to get a clean stop?

22-Sep-2021 DAQ Network Layer | KAB6

Sample investigation – granularity

22-Sep-2021 DAQ Network Layer | KAB7

DataRequest
messages

Sample investigation – C++ class

22-Sep-2021 DAQ Network Layer | KAB8

NetworkManager class (pseudo-code)
• start_listening(const std::string logical_addr)
• start_receiving(const std::string logical_addr, callback)
• send_to(const std::string logical_addr, const void* msg, size_t size)
• publish & subscribe with suitable arguments
• (where logical_addr ~= “Part3:DataRequest:RU-55”)

Some notes
• This model implies a switch to using callbacks for receiving messages
• It also implies that user code will handle (de)serialization of messages

(there will probably be interest in providing helper tools)

Other plans
Add ‘destination’ and ‘return address’ to DataRequest
message

22-Sep-2021 DAQ Network Layer | KAB9

A little detail on routing
The proposal is to keep the existing list of components, by GeoID, in the
TriggerDecision message unchanged

Several ‘lookup tables’ to get DataRequests to the right DLH
1. GeoID to RequestReceiver logical address (in TR Builder)
2. RequestReceiver logical address to hostname and port in the

NetworkManager [naming service; something from K8S - TBD]
3. GeoID to Queue in the RequestReceiver(s)

22-Sep-2021 DAQ Network Layer | KAB10

TriggerDecisions
DataRequests

Prototyping
There are ongoing discussions about many details of this
work.
To help provide some focus for those discussions, and to
gain experience with the issues with various use cases and
the pros/cons of various approaches, we’ll be looking into
some demonstration modules and small systems.

22-Sep-2021 DAQ Network Layer | KAB11

Topic that came up during discussion
Phil reminded us that one of the advantages of the Q2N/N2Q
model is that the user modules don’t need to know whether they
are running in the same DAQProcess as their collaborators or in
different ones. And, there are situations in which we may want to
keep that flexibility.
As such, the target for the changes described in this talk may be
interactions that we expect to always be between different
processes. For example, between TriggerRecordBuilder and
Readout modules, since it is a reasonable choice to always have
separate Dataflow/TRB and Readout processes.
The Trigger modules may be a different story. For those, it may
be beneficial to keep the flexibility of Q2N/N2Q.

22-Sep-2021 DAQ Network Layer | KAB12

