
Python configuration generation simplification

Philip Rodrigues

University of Oxford

October 6, 2021

1

The problem

I Python configuration generation is too complicated and difficult to use
I Eg, DS developers unable to add TP readout to minidaqapp configuration
I Specifics:

I Repetition of data/names, that have to be kept in sync. Eg, adding a module requires adding queues,
connecting each module endpoint to the queue

I Lots of non-local editing: eg, add a module, then add it to init, conf, start, stop etc. Taxes working
memory; tedious; hard to get right

I Underlying problems (in my opinion):
I Config is specified as “how the underlying app framework implementation works”, rather than “what the

user wants to do”
I Information that could be inferred by code has to be specified by the user (eg, network connections)

2

Proposed approach

I Minimize the amount of information the user has to provide; have code infer as much as possible
I In this case, user specifies list of modules, their configuration objects (for conf), and

connections between them
I Code infers the queues needed, the necessary start/stop/scrap commands and their order

I Same at the interprocess level: individual applications specified as modules/connections;
“top-level” specifies connections between app endpoints, and code infers necessary
hostnames/ports/Q2N-N2Q pairs

I Secondary advantage of this approach is that appfwk and other “infrastructure” can be changed
without changing all configurations: just change the common utility code that, eg, infers
Q2N-N2Q pairs

3

Scope and implementation

I Change configuration generation without changing anything in appfwk or nanorc; ie, json file
schema is unchanged (for now)

I Not addressing any bigger picture things like configuration database, changes to json output,
argument explosion, etc. Those are hopefully all orthogonal

I Intention (not really achieved yet): make steps from modules -> application -> system -> json
clearly separated, and do validation at each step

I Started by just modifying some configs in the trigger package:
https://github.com/DUNE-DAQ/trigger/tree/philiprodrigues/reduce-confgen-verbosity/python/trigger

I From the top down:
I A DAQ System is built from applications and the connections between them
I An application (App class) is specified by a ModuleGraph and the host on which it runs.
I A ModuleGraph is specified by a list of modules, their configs and connections, and external “endpoints”

for input and output
I Let’s go through from the bottom up:

4

https://github.com/DUNE-DAQ/trigger/tree/philiprodrigues/reduce-confgen-verbosity/python/trigger

Modules

Load moo type for configuration
moo.otypes.load_types('trigger/triggerprimitivemaker.jsonnet')
import dunedaq.trigger.triggerprimitivemaker as tpm

import util
from util import Connection as Conn

tpm_module = util.Module(plugin="TriggerPrimitiveMaker",
conf=tpm.ConfParams(number_of_loops=-1,

tpset_time_offset=0),
connections={"tpset_sink": Conn("ftpchm.tpset_source")})

I connections specifies that the tpset_sink DAQSink of this module should be connected to the
tpset_source DAQSource of the module named “ftpchm”

I When we generate the full application configuration, tools in util will automatically create the
necessary queue objects and settings to connect this DAQSink/DAQSource pair.

5

ModuleGraph 1

I Modules are grouped together in a ModuleGraph, which holds:
1. dictionary mapping module names to Module objects
2. dictionary of “endpoints” which are the “public” names for the ModuleGraph’s external inputs and

outputs
I Endpoint concept allows other applications to make connections to this one without having to

know about the internal details of modules and sink/source names
I (Intention is that eventually, can construct a ModuleGraph out of other ModuleGraphs, but not

implemented yet)

module1
input output

module3
input output

module2
input output

module1
input output

module3
input output

module2
input outputgraph_input graph_output

6

ModuleGraph 2

Example:
modules = {}

modules["tpm"] = util.Module(plugin="TriggerPrimitiveMaker",
conf=tpm.ConfParams(number_of_loops=-1,

tpset_time_offset=0),
connections={"tpset_sink": Conn("ftpchm.tpset_source")})

modules["ftpchm"] = util.Module(plugin="FakeTPCreatorHeartbeatMaker",
No outgoing connections specified here
conf=ftpchm.Conf(heartbeat_interval=50000))

the_modulegraph = ModuleGraph(modules)
Create an outgoing public endpoint named "tpsets_out", which refers to the "tpset_sink" DAQSink in the "ftpchm" module
the_modulegraph.add_endpoint("tpsets_out", "ftpchm.tpset_sink", util.Direction.OUT)

7

Applications

I App class represents an instance of a daq_application running on a particular host
I Consists of a ModuleGraph and a host on which to run
I Collected in dictionary like modules:

apps = { "myapp": util.App(modulegraph=the_modulegraph, host="localhost") }

app_connections = {
"myapp.tpsets_out": util.Publisher(msg_type="dunedaq::trigger::TPSet",

msg_module_name="TPSetNQ",
subscribers=["tpset_consumer1.tpsets_in",

"tpset_consumer2.tpsets_in"])
}

I Should probably make connections work like they do with modules

8

System

I The System class groups applications and their connections together in a single object:
the_system = util.System(apps, app_connections)

I A util.System object contains all of the information needed to generate a full set of JSON files
that can be read by nanorc

9

Generating JSON files

I To get from a System object to a full set of JSON files involves four steps:
1. Add networking modules (ie, NetworkToQueue/QueueToNetwork) to applications
2. For each application, create the python data structures for each DAQ command that the application will

respond to
3. Create the python data structures for each DAQ command that the system will respond to
4. Convert the python data structures to JSON and dump to the appropriate files

I make_apps_json(the_system, json_dir, verbose=False) does all four steps in one go. For
debugging/validation, can do each one individually:
app_command_datas = dict()

for app_name, app in the_system.apps.items():
Step 1
add_network(app_name, the_system)
Step 2
app_command_datas[app_name] = make_app_command_data(app)

Step 3
system_command_datas=make_system_command_datas(the_system)

Step 4
write_json_files(app_command_datas, system_command_datas, json_dir)

10

Next steps

I Look into providing other useful helper functions, eg register_data_provider() to indicate
that a module provides fragments for a given GeoID

I Come up with a better namespace, and work out how to deploy
I Try to convert minidaqapp config to this scheme (started on this locally)

11

