Introduction and News

Accelerator Frontier: Derun Li (LBNL), and Diktys Stratakis (Fermilab) Energy Frontier: Kevin Black (Univ. of Wisconsin-Madison), and Sergo Jindariani (Fermilab) Theory Frontier: Patrick Meade (Stony Brook Univ.), and Fabio Maltoni (Louvain U., CP3)

Recent Events

- 3rd Muon Community Meeting
 - Organized by the International Muon Collider Collaboration
 - Goal to develop Accelerator R&D Roadmap
 - 3-day event (1 day dedicated to physics and detectors)
 - Review R&D plan, resources, timescales, prioritization
- Goal: in time for the next European Strategy for Particle Physics Update, aim to establish whether the investment into a full CDR and a demonstrator is scientifically justified
- Two funding scenarios considered: minimal and aspirational
 - More details: <u>https://indico.cern.ch/event/1062146/</u>
- Next step submission of the final report to LDG and to CERN Council

Today's Agenda

2-
③ 10m 🖉 ▾ ③ 20m 🖉 ▾
𝕄 30m 🖉 ▾
𝕄 30m 🖉 ▾

Energy/Luminosity Points

- Last time proposed to use these points for the summary plots. Numbers represent integrated luminosity assuming 5 years of running at EACH energy:
 - Higgs pole 125 GeV: 0.025 ab⁻¹ 1.
 - 3 TeV: 1 ab⁻¹ 2.
 - 10 TeV: 10 ab⁻¹ 3.
 - 30 TeV : 10 ab⁻¹ (cons.) 90 ab⁻¹ (optim.) 4.

Received important input since then:

- Suggestion to consider conservative and optimistic scenarios for 125 GeV (0.010 and 0.025 ab-1)
- 90 ab^{-1} at 30 TeV is based on E² scaling, however there is a common opinion that such scaling would break for very high energies.
- Propose to use 10 ab⁻¹ for all points above 10 TeV. In line with the Smasher's Guide.
- Preliminary studies indicate that the effect on physics reach should not be dramatic, but this needs to be confirmed.

New Proposal

- Numbers represent integrated luminosity assuming 5 years of running at EACH energy:
 - Higgs pole 125 GeV: 0.010 ab⁻¹(conservative) and 0.025 ab⁻¹ (optimistic) 1.
 - 3 TeV: 1 ab⁻¹ 2.
 - 10 TeV: 10 ab⁻¹ 3.
 - 4. **30 TeV : 10 ab⁻¹**
 - For Higgs consider combination of (1)+(2) and (1)+(3)? 5.
- Studies at additional mass points (1.5, 6 and 14 TeV) are welcome and should be used for demonstrating reconstruction performance but likely won't make it to the physics reach summary plots/tables. For these extra points, we suggest :
 - 1.5 TeV: 0.25 ab⁻¹
 - 6 TeV: 4 ab⁻¹
 - 14 TeV : 10 ab⁻¹

Would like to finalize this asap. Please comment!