Pen and Paper Efficiencies (again)

Chris Tunnell and John Cobb

Thanks to Alain Blondel for sharing work that was adapted for VLENF

Appearance-only (though disappearance good too!)

$$Pr[e \to \mu] = 4|U_{e4}|^2|U_{\mu4}|^2\sin^2(\frac{\Delta m_{41}^2 L}{4E})$$

The VLENF Parameterization

Review

Methodology

- MCs are the oracles of our time, but take longer to get results from
- What's the physics behind the numbers?
- What can we learn quickly to guide what we simulate?
- (There is a rough write-up of the work)

Wednesday, 11 January 12

Ranges and Values

Region	Parameter	Value
	X_0	1.76 cm
Pure Iron	Thickness	$1 \mathrm{cm}$
	Density	7.874 g cm^{-3}
	Magnetic Field	2 Tesla
	Range	$576 { m g cm}^{-2}$
Polystyrene ($[C_6H_5CHCH_2]_n$)	X_0	43 cm
	Thickness	$1 \mathrm{cm}$
	Density	$1.06 {\rm g} {\rm cm}^{-3}$
	Magnetic Field	0 Tesla
Effective	X_0	$3.52 \mathrm{~cm}$
	Thickness	$2 \mathrm{cm}$
	Density	4.437 g cm^{-3}
	Magnetic Field	1 Tesla

optimist

pessimist, beta > 0.9

Momentum [MeV/c]	Range [cm]	p_{\perp}^B	$p_{\perp}^{\rm MS}$	$p_{\perp}^B/p_{\perp}^{ m MS}$
500.0	55.0	165.0	54.9	3.0
1000.0	126.0	378.0	81.8	4.6
2000.0	258.0	774.0	116.6	6.6
5000.0	623.0	1869.0	181.0	10.3

Momentum $[MeV/c]$	Range [cm]	p_{\perp}^B	$p_{\perp}^{\rm MS}$	$p_{\perp}^B/p_{\perp}^{\rm MS}$
500.0	39.0	117.0	46.3	2.5
1000.0	110.0	330.0	76.4	4.3
2000.0	242.0	726.0	112.9	6.4
5000.0	607.0	1821.0	178.6	10.2

CID Result

New plot: MIND comparison

From IDR, the MIND material ratio is 3 cm Iron to 2 cm Scint

CID Summary

- I think this says: we get roughly the CID we want by just seeing where the muon lands
- Using information from the saggita helps a little
- Certainly can be improved, but certainly is optimistic
- Waiting for real fieldmap

Comment on NC

- If it was just iron, 4 x 10⁻³ of chargedpions decay before interacting, faking a wrong-sign muon.
- Scint. has longer pion interaction length
- Alan: "Need kinematic cuts, kink detection, etc."
- Need to MC to do better.

The future

- Non-MC exercises like this are running out of steam
- Genie work in progress
- Got a handle on what is easy v.s. hard, now the real work begins...

Idea

- For LBNE, if WC then can we shoot at uBooNe? CD3, right?
- For LBNE, if LAr, can we shoot at their I kT prototype? Then 'upgrade' and build our detector?
- Golden channel is good and all...
- but we're better than a conventional beam even if magnetization is hard.