
nusystematics and
systematicstools

Luke Pickering
2021-10-11

L. Pickering 2

Motivation

● Charge of the Interaction Systematics group in 2018

L. Pickering 3

Error Propagation
● General technique:

○ Systematic parameter, θ (e.g. MACCQE),
gets varied, predictions of observations
respond.

○ Does the new prediction look more or less
like observations?

○ Build distribution of goodness-of-fits for a
range of parameter variations.

● Extract errors by mapping out a
goodness-of-fit as a function of θ, or from
an ensemble of randomly thrown, varied
parameter values.

● Parameters can be discrete or
continuous.

Arxiv [1612.07393]

Ensemble/
Multi-universe

Parameter
fits

L. Pickering 4

Parameter Variation Responses
● A response can be calculated in a number of ways:

● Full regeneration: Throw new events with a different physics
model.

○ Very slow, requires re-run of det-sim, reco, ...

● Exact reweight: Calculate relative probability to have thrown
the same event properties under a varied physics model.

○ Not all parameters are exactly r/w-able.

● ad-hoc reweight: Use full regeneration to calculate
approximate weights as a function of some specific event
properties.

○ Often not predictive in other kinematic projections.

● Kinematic shifts: Determine shifts in true or observed
particle kinematics that characterise the change in physics
model.

○ Inclusion post-reconstruction is approximate.

Lateral shiftCannot be
reweighted,
phase space
changes

Vertical
shift

L. Pickering 5

What Exists in LArSoft
● In LArSim/EventWeight there is a framework for producing

EventWeights from ART events:
○ Produces std::map<std::string, std::vector<double>>
○ Map key corresponds to parameter name.

● LArSim Producer module doesn’t use plugin framework so cannot
instantiate WeightCalculators in experiment-specific codebases.
○ Uboonecode has producer module that allows compile-time linking

of MicroBooNE-specific weighters.

● Semantics issues with ‘weight’ included in package/module/type names
when we wanted a generic 'response' framework.

L. Pickering 6

The (Re-)Design Goals
● Basic unit of systematic error propagation: parameter variation ➡ response.

● Key goal -- Flexibility of response use:
○ ‘Vertical’ (e.g. xsec weight) and ‘lateral’ (e.g. FS lepton momentum shift) responses
○ Support Multi-universe/systematic throw paradigm, but not enforce it.
○ Provide tools for building parameterized response functions: Splines, polynomials, ...

● Key goal -- Do not force when responses should be calculated:
○ Can run at production time, or analyzers can run on their selected events.
○ This is free in the ART event framework.

● Key goal -- Keep scope of code as wide as possible (and no wider):
○ Try to provide an extensible solution, but don’t get bogged down trying to solve the

general problem.
○ Can be used for: Flux, Interaction, and GEANT4-level uncertainties.
○ Could be used for: Calibrations, detector systematics.

L. Pickering 7

Tool Overview
● Two new packages were written to meet the charge and design goals

○ systematicstools: a generic systematic parameter framework providing facilities for
parameter metadata interrogation and a plugin architecture for event weighters/variers

■ No physics whatsoever.
○ nusystematics: a package built on top of systematicstools that provides an interface to

GENIE ReWeight as well as custom systematic event weighting implementations

● Live in https://github.com/LArSoft

● Dependencies:
○ ROOT
○ Can be built with or without dependence on ART
○ nusystematics depends on GENIE+ReWeight

● Other:
○ Can interface with NUISANCE for prediction/error comparisons with published xsec data
○ Can be built against GENIE v2 or v3:

■ GENIE v3 interface needs validation.

https://github.com/LArSoft/systematicstools
https://github.com/LArSoft/nusystematics
https://github.com/LArSoft

L. Pickering 8

Some (too many) Details

L. Pickering 9

The ISystProvider
● Responses are calculated by implementations of the ISystProvider ABC,

declares something like:
○ std::unique_ptr<EventResponse_t> GetResponse(art::event const &)=0;

● Must be run-time configurable to calculate and stash deterministic
event responses:

○ void Configure(fhicl::ParameterSet const &)=0;

● Must provide information about the number and details of systematic
response parameters that it provides:

○ SystMetaData GetMetaData();

L. Pickering 10

The EventResponse
● The data product used in nusystematics is very similar:

○ std::vector< struct { paramId_t, std::vector<double> } >
○ paramId_t is an unsigned int

● Outer std::vector contains ‘event unit’s:
○ Generalized sub-unit of an art::event: often will correspond to a single true

neutrino interactions within an event trigger.
○ However, could be MIP-like tracks in an event responding to some reweight of

GEANT rescattering parameters.

● Inner std::vector holds all calculated event responses to a given
parameter identified by paramId_t.

● Correct use of responses requires extra parameter metadata:
○ Parameter name, Parameter central value, varied values, vertical/lateral shift, ...

L. Pickering 11

The Metadata: Parameter Header
● As responses are generalized, so we need to

have tools for interpreting them.
● Event responses must be fully interpretable

from the ‘Parameter Header’
configuration.

○ Format allows most to be generically
interpreted.

○ For some applications, the parameter
name might give the consumer a hint:
e.g. EbFSMuMomShift

○ Arbitrary string options can also be
used to pass information to
interpreters: e.g. PolyOrder4 might
signify that responses correspond to
fitted response function coefficients
rather than vertical/lateral event shifts.

L. Pickering 12

High-level Overview

● A set of ISystProviders is configured by specific FHiCL (user written)
● Configurations are expanded to a common ‘parameter header’ format by each

ISystProvider:
○ Used to deterministically add relevant event response data products to each event.
○ Currently the generated metadata is FHiCL, but can be a bit clumsy for large sets of

parameter throws -- however, it is not designed to be frequently human-written.
● This configuration is then given to ART jobs that calculate and stash responses to all

configured parameter variations for each input file.

syst_provider
fhicl

Generate
configuration

Parameter
header
configuration

ART file 1
ART file 2
ART file 3
ART file ...
ART file NC

al
c.

 re
sp

s.

A
d

d
 d

a
ta

 p
ro

d
.

L. Pickering 13

A Concrete Example: NuSystematics
● Currently one dependent package containing ISystProviders that handles neutrino

interaction systematic uncertainties:
○ Depends on nutools for simb -> GHep conversion.
○ Links to GENIE

● At the time of writing there are three ISystProviders:
○ GENIEReWeight: GENIE ReWeight wrapper, similar to the one in nutools but to

avoid more needless levels of abstraction, it interactions with GENIE directly.
○ MKEnuq0q3Weighting: Provides template weighting for single pion production

events to move between GENIE default model and the updated MK model.
○ MINERvAq0q3Weighting: R. Gran RPA and Nieves 2p2h enhancement tunes and

systematic uncertainties.
● All declared as ART tools that are instantiated through art::make_tool -- no

experiment-specific Producer Modules required.
● Expect one or two more to follow in build up to DUNE TDR.

L. Pickering 14

Generating Configurations
● A user will generally write simple,

SystProvider-specific configuration
FHiCL.

● The ISystProvider implementation
must know how to translate that into
common Parameter Header metadata
that can be used to re-configure an
instance at response-calculation time.

● e.g. GENIEReWeight configuring an
MaCCQE spline generation job.

○ “(-2_2:0.25)” is translated to
parameter values at -2𝞼 to 2𝞼 at 0.25𝞼
steps by GENIEReWeight_tool

Generated from above by GenerateSystProviderConfig

 -c bla.fcl

L. Pickering 15

Running ART Jobs
● The generated configuration can be

given to the LArSystematics
Producer module to instantiate and
configure the required
ISystProviders.

● Responses data products are then
calculated.

● The configuration is
human-readable/editable, but it is
expected that standard sets of
responses to calculate will be
provided with the ISystProviders.

● An MD5 hash of the
configuration FHiCL is used
as the data product
instance name to ensure
that the correct metadata is
used to interpret responses.

L. Pickering 16

Interpreting Responses: Pre-fab tools
● The generated FHiCL configuration contains all the information

required to interpret the data product responses.
○ The response interpretation could be written directly into an analysis to take

advantage of any efficiency improvements, but generic tools are provided.

● Provided tools depend only on the LArSystematic interface headers
and are completely detached from ART.

○ ParameterHeaderHelper: Provides methods to interact with objectified Parameter
Header metadata and instantiate and evaluate TSpline3 instances.

○ EventSplineCacheHelper: Template for caching analysis events in memory
alongside the calculated parameter responses:

■ Provides various helper methods: e.g. to get total event weights given sets of
parameter values.

L. Pickering 17
Interpreting responses Example: GENIE ReWeight

● Can spline calculated responses to
allow approximated continuous
parameter evaluation between limits.

Example CCQE event
response splines

Vertical shifts, but contain shape information!

L. Pickering 18

Dependent Parameters
● Some response calculations depend on multiple parameters

and cannot be factorized to 1D response functions.
○ e.g. Neutrino-induced single pion production models

depend on 2-3+ parameters.
● Two ways forward:

○ Ignore correlations, treat as effective parameters and
use N * 1D response parameters.

○ Only allow simultaneous ‘multi-sim’ throws of sets of
parameters:

■ Introduce ‘Responseless parameter’: Not all
parameters induce responses themselves but
instead specify varied parameter values and a
‘response parameter’ identifier.

■ E.g. MARes, CA5 in SPP model respond through
SPPResponseParameter.

L. Pickering 19

Parameter Headers
● Use parameter unique Id to look

up parameter meta-data.
● This meta-data is used to

configure systematic providers as
well as interpret their responses.

● Generic format used for all
providers and must be fully
sufficient to interpret responses.

● e.g. spline-able MaCCQE
responses, where:

○ responses[3] corresponds to
MaCCQE=-1.5𝛔

L. Pickering 20

Tool Config
● However, it would be nice if an

arbitrary systematic response provider
could be configured in a less verbose
format.

● The Tool Config is completely provider
specific and is the FHiCL that should
be written by end users.

● Each provider must be able to
generate compliant Parameter
Headers from input Tool Config.

● E.g. The Tool Config that generates the
previous example.

Thanks for listening

L. Pickering

