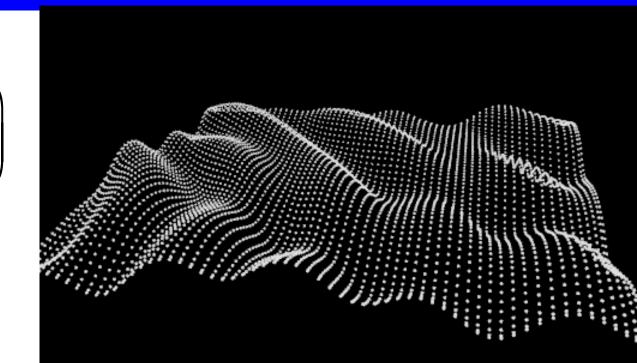


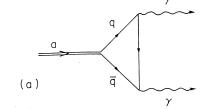
October 8, 2021 Wave dark matter Snowmass, community talk

Short and long-term axion dark matter searches

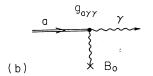
Yannis K. Semertzidis IBS-CAPP & KAIST


Weighing the vacuum using:

- High-field, high volume magnets; microwave cavities
- Low temperature (<50mK)
- High quality resonators, and
- Quantum-noise-limited RF amplifiers.


Axion dark matter search

Axion Dark Matter: a Cosmic MASER


$$l_{DB} \approx 1 \text{m} \times \left(\frac{1 \text{meV}}{m_a}\right)$$

Axion Couplings

Gauge fields:

Electromagnetic fields (cavities)

$$L_{\rm int} = -\frac{g_{a\gamma\gamma}}{4} a F^{\mu\nu} \tilde{F}_{\mu\nu} = g_{a\gamma\gamma} a \vec{E} \cdot \vec{B}$$

Gluon Fields (Oscillating EDM; storage ring EDM)

$$L_{\rm int} = \frac{a}{f_a} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

 Fermions (coupling with axion field gradient, pseudomagnetic field, ARIADNE; GNOME)

$$L_{\text{int}} = \frac{\partial_{\mu} a}{f_a} \bar{\Psi}_f \gamma^{\mu} \gamma_5 \Psi_f$$

CAPP's magnets

- Establish a facility to take immediate advantage of currently available technology
 - HTS and
 - LTS (NbTi, and Nb₃Sn) magnets

- NI-HTS, 18T, 70mm diam. Delivered Summer 2017
- NI-HTS, 25T, 100mm diam. (funding limited). On hold.
- LTS (Nb₃Sn), 12T, 320mm diam. Delivered and commissioned in 2020. Currently operational.

CAPP's plan

High-frequency, high-efficiency microwave (pizza) cavities

• Low temperature, high quality resonators → Superconducting cavities (currently, Q near 1M)

 Quantum-noise limited RF-amplifiers (currently, JPAs near quantum noise level)

• Single photon RF-detectors (>8GHz), plan.

International collaborations

GNOME (Axion domain walls, stars; International network)

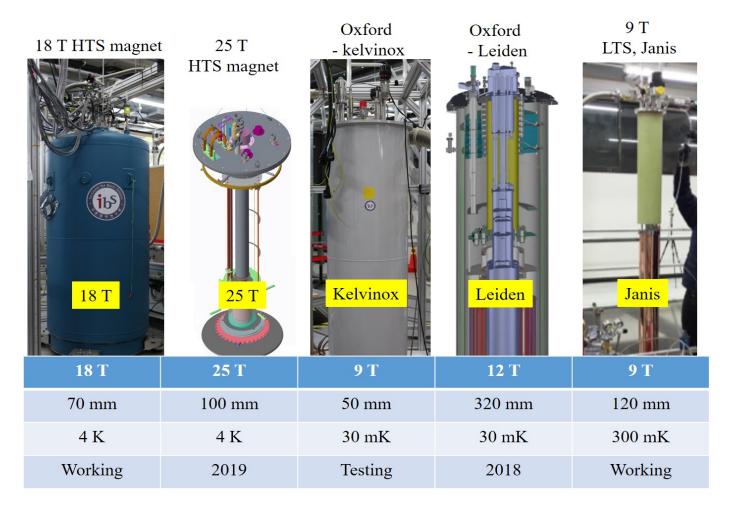
• ARIADNE (Axion-mediated long-range forces; No dark matter needed. Probes high-mass axions.)

 Storage ring EDM for direct low mass axion-like exps., probing of theta_QCD with high-sensitivity

CAPP's International activities status

• GNOME (axion stars, domain walls,...). CAPP is operational and reporting.

• ARIADNE (axion mediated long-range monopole-dipole interactions). Funded by NSF, great technical progress.


• Storage ring proton electric dipole moment experiment (pEDM) Part of Snowmass process.

Refrigerators and Magnets at CAPP

Refrigerators							
Vendor	Model	Base T (mK)	Cooling power	Install			
BlueFors (BF3)	LD400	10	18μW@20mK 580μW@100mK	2016			
BlueFors (BF4)	LD400	10	18μW@20 580μW@100	2016			
Janis	HE3	300	25μW@300mK	2017			
BlueFors (BF5)	LD400	10	18μW@20mK 580μW@100K	2017			
BlueFors (BF6)	LD400	10	18μW@20mK 580μW@100K	2017			
Oxford	Kelvinox	<30	400 @120mK	2017			
Leiden	DRS1000	100	1mW @100mK	2019			

		Magn	ets	
B field	Bore (cm)	Material	Vendor	Delivery
26T	3.5	HTS	SUNAM	2016
18T	7	HTS	SUNAM	2017
9T	12	NbTi	Cryo- Magnetics	2017
8T	12	NbTi	AMI	2016
8T	16.5	NbTi	AMI	2017
25T	10	HTS	BNL/CAP P	2020
12T	32	Nb ₃ Sn	Oxford	2020

EXP
BF3 & BF4 for testing RF, QA and cavities
CAPP-MC
CAPP-PACE
CAPP-8TB
CAPP-12TB and CAPP-25T

Liquid helium type superconducting magnet system at CAPP

LTS-12T/320mm from Oxfrod Instruments

- Based on Nb₃Sn and NbTi
- Persistent mode switch
- Delivered and commissioned in 2020
- The dilution fridge, >1mW at 120mK
 has been delivered and commissioned
- Low temp dil. fridge base 5.5mK
- Cavity: 37 liter cavity, <100mK



Figure 6. Recent picture of the LTS-12T/320mm magnet in its final form at the Oxford Instruments laboratory. Its total energy content is 5.652 MJ, a powerful magnet that requires respect and caution when energized. The system is to undergo its final tests before its scheduled shipment to IBS-CAPP by March 2020.

LTS-12T/320mm from Oxfrod Instruments

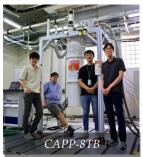
Commissioned in 2020 delivering 12T max field (5.6MJ)

The CAPP-12TB, our flagship experiment

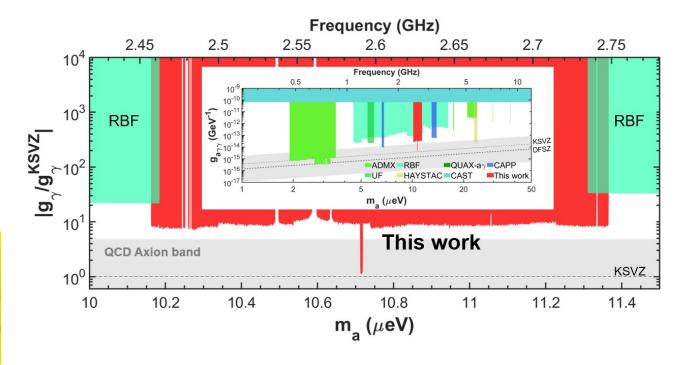
- Axion to photon conversion power at 1 GHz
 - KSVZ: 4.3×10⁻²² W or ~650 photons/s generated
 - DFSZ: 5.9×10⁻²³ W or ~90photons/s generated
- With total system noise of 0.1K, Q=10⁵
 - KSVZ: 100GHz/year
 - DFSZ: 2GHz/year
- With total system noise of 0.4K, Q=10⁵
 - KSVZ: 7GHz/year
 - DFSZ: 0.15GHz/year
- With total system noise of 1.2K, $Q=10^5$
 - KSVZ: 0.7GHz/year
 - DFSZ: 0.015GHz/year

Short term goals (5 years)

- Prototype experiments running at KSVZ level sensitivity (currently two are running and two more are coming online soon)
- Flagship experiment at DFSZ level sensitivity with 12T, 37 liter-cavity


- Next five years: 1-8 GHz at DFSZ level.
- Subsequently: probe axions in the 1-8 GHz for 10% of axions as dark matter with SC cavities, better noise.

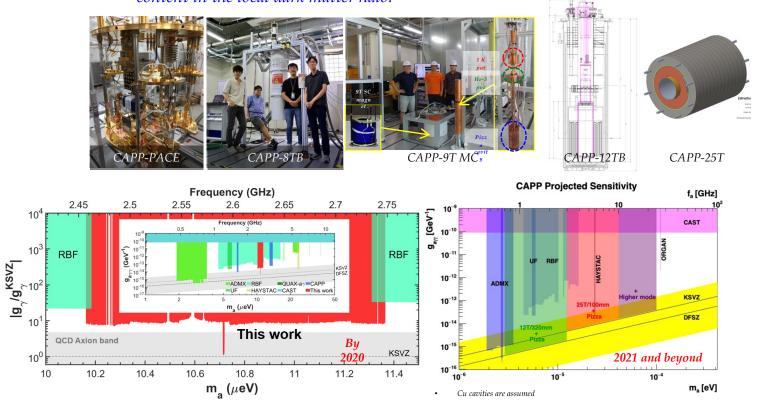
IBS-CAPP up to now



CAPP-9T MCy

- ▶ S. Lee et al., Phys. Rev. Lett. **124**, 101802 (2020)
 - J. Jeong et al., Phys. Rev. Lett. 125, 221302 (2020).
 - O. Kwon et al., Phys. Rev. Lett. 126, 191802 PRL (2021)

IBS/CAPP Prospects



- ▶ S. Lee et al., Phys. Rev. Lett. **124**, 101802 (2020)
- J. Jeong et al., Phys. Rev. Lett. 125, 221302 (2020).

W/SC cavities, down to 10% of axion dark matter content can be probed

O. Kwon et al., Phys. Rev. Lett. 126, 191802 PRL (2021)

All the ingredients together, we will reach the DFSZ sensitivity even for 10% axion content in the local dark matter halo.

Long term goals (~10 years)

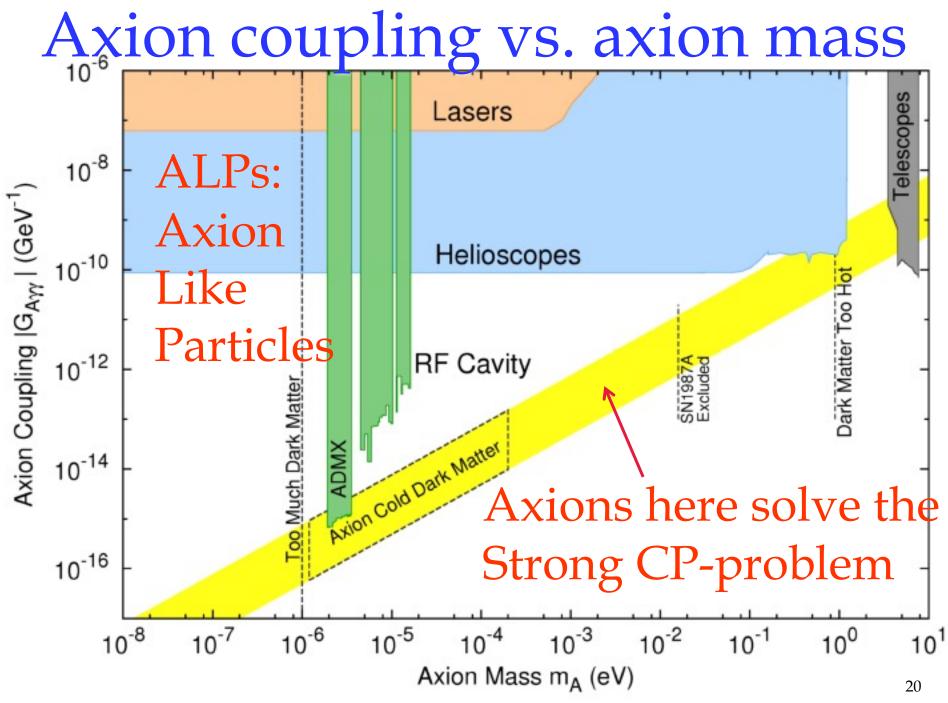
• Single photon detector, 8-25 GHz with micr. cavities

ARIADNE, could provide axion evidence for higher mass

• Storage ring EDM with 10⁻²⁹e-cm sensitivity. Three orders of magnitude in theta_QCD improvement

• Storage ring EDM direct search for low mass axion-like experiments.

Summary


• Axion-dark-matter efforts are becoming interesting: High field magnets, High volume-high frequency sensitivity, quantum-noise limited detectors, SC cavities,...

• We have accomplished all R&D goals. All efforts on data taking mode.

• Aiming for <10% axion dark matter sensitivity with a ten-year time-span, possibly shorter.

• 1-8 GHz (five years, 100% ADM) and 1-25 GHz (ten years, 10%ADM)

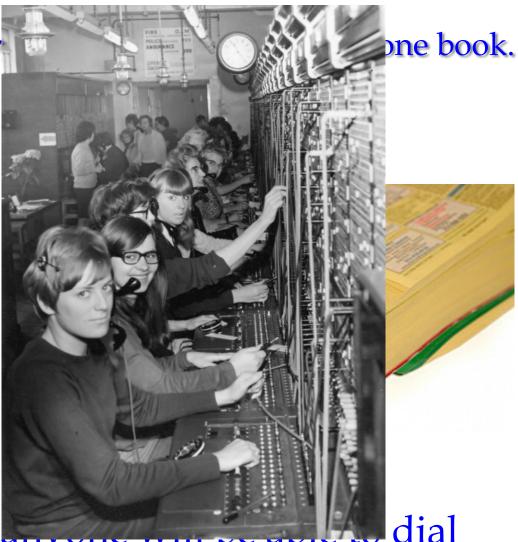
Extra Slides

If you don't know the axion mass need to tune

Scanning rate:

$$\frac{df}{dt} = \frac{f}{Q} \frac{1}{t} \approx \frac{1 \text{ GHz}}{year} \left(g_{a\gamma\gamma} 10^{15} \text{ GeV} \right)^4 \left(\frac{5 \text{ GHz}}{f} \right)^2 \left(\frac{4}{SNR} \right)^2 \left(\frac{0.25 \text{ K}}{T} \right)^2 \right)$$

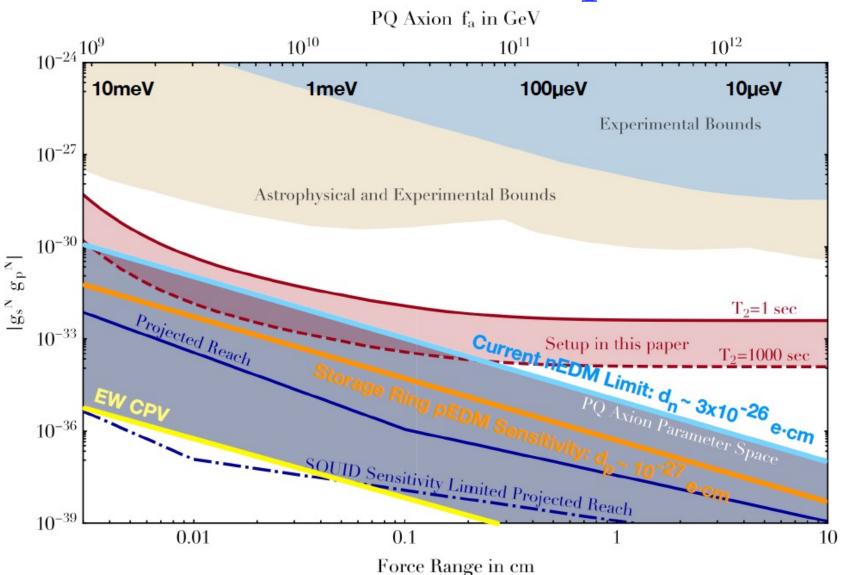
$$\left(\left(\frac{B}{25T} \right)^4 \left(\frac{c}{0.6} \right)^2 \left(\frac{Q}{10^5} \right) \right)$$


$$T = T_{\rm N} + T_{\rm ph}$$

Axion dark matter search

• The axion mass is unknow The way we look for it:

• Once it's discovered, any one was season dia in... and talk to it.



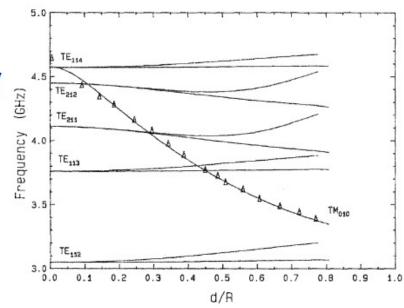
Can we experimentally check the axion physics?

Yes, with ARIADNE: Axion Resonant InterAction DetectioN Experiment

and proton/neutron EDM!

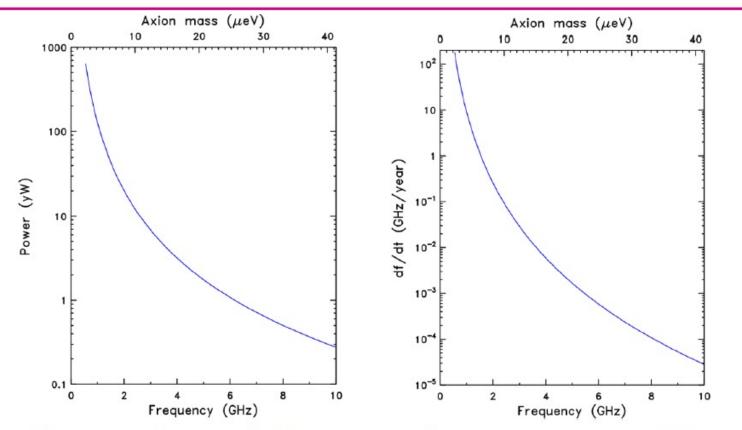
Unique: probing axion physics with ARIADNE and p/nEDM

David Tanner


Strawman: Single cavity

 Single cylinder, 8 T field; change size to resonate at search frequency

$$P = 130 \text{ yW} \left(\frac{1 \text{ GHz}}{f}\right)^{2.67}$$


- Volume decreases as f^{-3} , the Q decreases as $f^{-2/3}$ while the mass increases as f
- Length as well as diameter changes because the cavity cannot get too long
 - The longer the cavity, the more TE/TEM modes there are
 - Typically:

$$L \sim 4.4r$$

David Tanner

Strawman 2: Single cavity

- Power and scan rate decrease as frequency goes up
- Just the opposite of what we want.

