BREAD: Broadband Reflector Experiment for Axion Detection

Snowmass CF2 Wavelike Dark Matter Meeting
10 min review talks | 8 October 2021

Jesse Liu for BREAD
University of Chicago → University of Cambridge
BREAD science team

Science goal: broadband $m \gtrsim 10^{-4}$ eV axion & dark photon DM search

R&D supported by DOE HEP-QIS QuantISED, FNAL LDRD

See also UW Beyond Gen2 [Jan 2021], CPAD [Feb 2021] (Andrew Sonnenschein), Patras [Jun 2021] (Stefan Knirck) and Snowmass LoI CF2 No. 179
The broadband & high-mass search problem

1) Desire broadband but existing cavity haloscopes are narrowband $\Delta m/m \ll 1$

2) Desire high mass but canonical search rate* $R \sim f^{-14/3}$ impractical for $m > 50 \mu$eV

BREAD: R&D program to overcome both longstanding obstructions

*See e.g. Backes et al [2008.01853] for how to overcome this scaling in HAYSTAC
Step 1: convert DM to photons

Induce axion–photon conversion via conducting surface in B-field

Axion dark matter augments Ampère–Maxwell equation

\[\nabla \times \mathbf{B} - \partial_t \mathbf{E} = J_{\text{DM}} \]

Boundary conditions imply \(\perp \) SM photon emission

\[\frac{P_a}{10^{-21} \text{ W}} = 3.1 \cdot \frac{\rho_{\text{CDM}}}{0.3 \text{ GeV cm}^{-3}} \cdot \frac{A}{10 \text{ m}^2} \left(\frac{B}{10 \text{ T}} \right)^2 \times \left(\frac{g_{a\gamma\gamma}}{10^{-11} \text{ GeV}^{-1}} \frac{1 \text{ meV}}{m_a} \right)^2. \]

Dish eschews tuning to unknown DM mass
Inherently broadband ⇒ ideal for searches

Concept proposed in Horns et al [1212.2970]

Cylindrical barrel driven by standard solenoid & fridge geometries

9.4 T human MRI @ UIC
https://meml.lab.uic.edu
10.5 Tesla/88 cm bore Passively Sheilded

Fridge for ADMX science at FNAL
(photo: Kristin Dona)

See also “Ultra-High Field Solenoids and Axion Detection” Mark Bird (2020)
Step 2: collect photons

Low frequency ~ 20 GHz
numerical Maxwell eqn

High frequency ~ IR
ray limit $\lambda \ll \ell_{\text{sens}}$

Small 3D-printed
test model @ FNAL

Proposed dark photon
pilot schematic

Kate Azar, Matthew Malaker, Gabe Hoshino (summer students)
led many detailed simulation studies

↑ Parabolic reflector geometry for BREAD
→ Inverse of classical lighthouse (Bordier-Marcet 1811)
Cylindrically symmetric parallel rays from/to a point

Gabe Hoshino led in situ tests

Currently iterating with engineers to manufacture reflector for pilots

uslhs.org/reflectors
Step 3: detect photons

CANDIDATE PHOTOSENSOR CLASSES

Heterodyne [microwave]
Down-convert frequencies with local oscillator
High resolution for narrow spectral features
Noise limited by standard quantum limit $k_B T = h \nu$
Promising for QCD axions around $O(10)$ GHz regimes

Bolometers [microwave to optical]
Very broadband $\Delta m/m \gg 1$, noise limited for QCD axions
Transition Edge Sensors, Kinetic Inductance Detectors
Well-established sensors reach $\sim 10^{-19}$ W/$\sqrt{\text{Hz}}$ (TES, KID)
Recently Quantum Capacitance Detectors $\sim 10^{-20}$ W/$\sqrt{\text{Hz}}$

Photocounters [near-IR]
Superconducting nanowires (SNSPD) e.g. by Caltech/MIT/NIST
Low noise but present $E_{\text{threshold}}$ around near-IR for counting
Hochberg et al 1903.05101 10^{-4} Hz dark count for DM search
Verma et al 2012.09979 extended up to 9.9 μm (0.12 eV)
Preparing sensor testing @ Fermilab towards pilot

Kristin Dona, Stefan Knirck, JL, Andrew Sonnenschein pictured; thanks to Israel Hernandez, David Miller, Tony Zhou et al
Projected sensitivity

Bottom line: next generation photosensors could decisively search QCD axion benchmarks over several mass decades motivating sensor R&D
Snowmass synergies

Particle physics
Principal goal to discover axion and/or dark photon dark matter in next decade

Astronomy
Decadal survey, sub-mm/IR science, Photosensors for future observatories

Quantum technology
Information science, sensing, telecommunications

Cosmic Frontier
CF2 wavelike dark matter

Accelerators
AF7 R&D
High field magnets

Instrumentation
IF1 quantum sensing
IF2 photon detectors

Underground
UF2 Facilities for cosmic frontier

BREAD naturally fits in high-mass CF2 whitepaper with inevitable IF1/2 synergy
E.g. synergy: different science driving similar sensor R&D

Origins space telescope demands $\sim 10^{-20} \text{ W/}\sqrt{\text{Hz}}$ sensors across mid-/far-IR

\leftarrow origins.ipac.caltech.edu technology & science

Simulation of QCD NEP (blue) versus wavelength for the optical loading predicted for the OST compared with the required NEP (orange).

Example TES, KID, SNSPD discussion for OST science
SUMMARY

Broadband Reflector Experiment for Axion Detection

- **Multidecade discovery reach** of axion/dark photon DM overcoming broadband & high-mass search problem
- **Unique geometry** practical for standard solenoids & fridges with science demands driving next-gen photosensor R&D
- **Preparing sensor testing** at FNAL for nearer term pilot
 Longer term 5-10 year R&D parallelling Snowmass scope
- **Interesting synergies** crossing traditionally non-HEP communities from astronomy to quantum technology
- **Welcoming friendly** multidisciplinary group at early stages with much room for individual creativity
EXTRAS