
DUNE DAQ Dashboards

A proposal

Marco Roda

Overview

● We have a dashboard repo
○ Thanks to Alessandro for creating the repo

● Now the questions are:
○ How do we populate the repo?

■ which plots? standard/preferred formats
○ Who populates them?
○ What are the good practices?

■ Nice features we should use that are offered from Grafana

● I’m going to make a proposal
○ It’s mostly the summary of what I found useful during debugging
○ Maybe I should say proposals

■ I’m going to suggest many
○ These are just hints at the moment and not a full set of proposal

■ We can start from here and see if we like the suggestions

● I added a final section with open problems more specific for the coldbox test

2

https://github.com/DUNE-DAQ/grafana-dashboards

Proposal for the graphics layout
● The system is already too complicated to have all information on a single panel

○ Naively the idea is to use a general overview panel that can grant access to specific subsystem panels
○ Subsystem panels are not necessary related to physical subsystem

■ we can envision mixed panel if there is some informations that need to be cross checked simultaneously

● This can be achieved using “links” - Documentation

3

https://grafana.com/docs/grafana/latest/linking/?pg=hp&plcmt=lt-box-dashboards

Links - and tags

● We can link anything
○ Or make a selection based on the tags of the dashboards

■ We can optimise our tags and links to obtain the desired behaviour

● Proposal
○ Subsystem dashboards can have the tag “Sharable”

■ And the mains can link against all the object tagged as Sharable
■ In this way we create a consistent set of dashboards

○ Subsystem can link against other dashboards as well
■ The presence of Sharable tag on the sub-sub dashboards will control if the lowest level dashboard

will be linked in the main dashboard or not
○ We could have different links for subsystem that are application dependent (Event Building) and systems

which are beyond partitions (Timing)

4

Possible usage cases of links

● Main
○ Subsystems in partition

■ Event Building
■ Trigger(s)
■ Readout

● ….
■ DQM

○ Resources
■ Timing
■ network
■ Disk usage
■ CPU/RAM
■ Servers (same information but different aggregation)

5

Variables

● Variables are extremely useful to allow different users to use different
dashboards
○ Archetypical example is the partition name
○ application and module names are probably as important in our DAQ system

● Variables are ported in linked dashboards when opened

● Proposal
○ Dashboards should contain variables as much as possible
○ variables to be inherited from the main (or in general from upper level dashboard) should have

the same name
■ Variables that should not be inherited should have different names

6

Proposal for some good practices

● The basic assumption is
○ “Module developers should know best the behaviour of their code”
○ They should be able to understand the system to provide the best dashboard for a certain

subsystem
■ Some metrics are not intuitive or even just complicated

○ Of course with feedback from users

● Proposal
○ Module developers should prepare dashboard(s) for their subsystem
○ For mixed dashboards, we should have someone working on them

■ Example: connection monitoring
○ Make sure that the rendering of the metrics on the dashboards should not be sensitive to the

OPMON interval
■ Otherwise users will be confused

7

Open questions

● This ties a bit with the metrics implemented by the developers:
○ Shall we have common guidelines?

■ E.g. counter metrics - Is it worth having counters for the whole run, for time interval, etc
when these can be constructed via the dashboards?

○ This might make things easier for the developers

● What is the most readable format?
○ Counters? frequencies?
○ Feedback from user needed

■ Hopefully this will be more clear after the coldbox tests

8

Possible next step

● If we like these ideas we can
○ formalise these guidelines in the README of grafana-dashboards

■ Are there better entry points for this kind of documentation?

● Start producing an inventory of the available dashboards
○ For sure not all subsystems have a dedicated “sherable” dashboard

■ Even if there is not much to show for a single dashboard having a starting point is useful for future changes
■ It will help the creation of main

○ Take actions for the missing one

● Start working on a possible main
○ I think the repo already contains a good one, we can add links, simplify it a bit

● Is it possible to have pockets so that it takes the latest version of dashboards?
○ We should consider starting adding tags to the dashboard repository as well
○ To make the dashboards part of the releases

9

https://github.com/DUNE-DAQ/grafana-dashboards

10

Preparation for Coldbox

Some open questions to share and cross-check

11

● We need to specify which Grafana instance(s) will we use for looking at OpMon metrics from the
Coldboxes, VST, and NP02/SSP
○ My guess is that it will be np04-srv-009
○ Even if the tester will use pocket instances for the minidaq app, they can send data to the np04-srv-009 grafana instance

● What about a standard or recommended dashboards for the opmon metrics?
○ What will the names of those dashboards be?

■ If we follow the previous plan, we just need to deploy initial dashboard and the others will follow through
○ What is the documentation needed by the coldbox testers?

■ Hopefully once we have this information we can prepare a page for them that contains all this information

● How many different test environment we need to support simultaneously?
○ Will it be enough to change the partition name in the dashboard to support them all?

■ My guess is yes, but I’m happy to take feedback

● What dashboard that are needed for the coldbox test are simply completely missing?
○ Is it a problem of the dashboard only or the metrics themselves have to be written?

That’s all folks
12

