
Simulation And Many Cores

January, 2012
Philippe Canal

Philippe Canal, FNAL January 2012

One Performance Study

Using simplifiedCalo a Geant4 example from
Andrea Dotti:

Test of Shower shapes using selected simplified
calorimeter setups

Using neutron particle gun at 7GeV

2

Philippe Canal, FNAL January 2012

A Few Observations

Largest fraction of the time spent in log and exp
during initialization.

G4HadronCrossSection::CalcScatteringCrossSection
next largest contributor (18% of DoEventLoop)

Time spent is spread amongst large number of
functions.

3

Philippe Canal, FNAL January 2012 4

Philippe Canal, FNAL January 2012

Opportunities

1% of time spent in ‘IsApplicable’ routines

5

Philippe Canal, FNAL January 2012

Opportunities

1% of time spent in:
G4HadronCrossSection::GetParticleCode

6

Philippe Canal, FNAL January 2012

Opportunities

G4hPairProductionModel::
 ComputeDMicroscopicCrossSection

Takes 55% of the cpu time during
G4RunManager::RunInitialization.

Called 211688 times but with ‘only’ 112871 distinct
inputs.

Consecutive calls have most often 2 arguments that are
the same and the 3rd one incrementing slowly.

7

Philippe Canal, FNAL January 2012

Opportunities

G4HadronCrossSections::CalcScatteringCrossSections

Takes 18% of the event processing CPU time (during
G4RunManager::DoEventLoop)

called 376,200,793 times with only 34,588,580 (9%)
distinct input and output values.

Series of calls where 2 of the three main inputs are the
same for 5 or 6 consecutive calls while the 3rd argument
varies slowly and the results are numerically very close.

Same exact series of calls (with the same results) are
done many times in close proximity.

8

Philippe Canal, FNAL January 2012

CPU Efficiency

Library Inst. Per Cycle
libm 0.8

G4Geometry 0.71
CLHEP 0.72

G4Processes 0.56
G4Tracking 0.55

G4Track 0.52
G4Globals 0.65

AMD’s CodeAnalyst
performance Analyzer can
calculate the number of
instructions per CPU clock
cycles in each libraries.

This tables shows the result
for the novice example N02

9

Philippe Canal, FNAL January 2012

ParFullCMS Example

10

Philippe Canal, FNAL January 2012

Lessons Learned

Retrofitting thread safety is expensive
In development time
In run-time CPU
In user development time

Any user callback needs to also be made thread safe

Most memory savings can also be achieved via
fork-and-copy-on-write technique

11

Philippe Canal, FNAL January 2012

Structural Opportunities

Geant4 code often tests repetitively for applicability
Many calls to IsApplicable, GetParticleCode.

Several cases of repeated calls with slow varying
inputs and outputs

G4hPairProductionModel::ComputeDMicroscopicCrossSection
G4HadronCrossSections::CalcScatteringCrossSections

12

Philippe Canal, FNAL January 2012

Structural Opportunities

Particles/tracks propagated through the same
volumes
Many decisions can be precomputed, at least
partially:

which physics processes apply to which set of
particles
for which set of particles should the magnetic field be
used
physics process dependent on the particles’ energy or
other variable properties

13

Philippe Canal, FNAL January 2012

Goals and Constraints

Increase CPU efficiency

Enable use of many cores and GPU

Use the need for potentially significant user
changes as an opportunity for larger structural
changes

14

Philippe Canal, FNAL January 2012

Design Directions

Replace the looping mechanism from handling one
single element at a time to handling multiple elements
(vectors)

Reduce the number of decisions and thus the number of
incorrect branch predictions
Reduce the number of overall functions calls
Reduce the number of calculations

For example if several tracks are in the same volume,
lookup/calculate/use parametrization only once

Improve memory locality for example by having
collections of light weight objects

15

Philippe Canal, FNAL January 2012

Advantages

Lightweight objects and vectorization is more in
line with GPU and other small cache CPU

Necessary rewrite will be an opportunity to be
efficiently thread-aware

16

Philippe Canal, FNAL January 2012

High Level Architecture

(Some of the) Future frameworks will be thread
capable

FNAL supplies the art framework to several Intensity
Frontier experiments
art is being updated to be able to process multiple
events in parallel

Requires coordination between the framework and
Geant to not over compete for computing resources

17

Philippe Canal, FNAL January 2012

Multi Core Framework

18

Philippe Canal, FNAL January 2012

Track Processing

19

Philippe Canal, FNAL January 2012

Track/Tracklets Bundles

Gather tracks/particles together to minimize run-time
decisions
Explore which set of dimensions is best

Particle type, Energy range, Location, etc.
Explore when to move the bundles from core to core and
when to bring external data to the bundles

For example a set of volumes might be pegged to a core/GPU
Split objects in subsets of datum that are used together

Increase data locality, minimize data transfer (GPU)
One possible example: the ‘location’ of all the track in a bundle
could be in a vector<location>

20

Philippe Canal, FNAL January 2012

Track/Tracklets Bundles

Each track/tracklet will need to know
to which event it belongs
which module instance contains the context for digitizing

Geant callbacks must be associated with the right module

The reader of the output queue of tracks will need to
Assemble tracks back into events
Know when all tracks are complete for an event

The event then needs to be given back to the right module instance

Need both event and sub-event level parallelism
See Rene Brun’s conclusions.

21

Philippe Canal, FNAL January 2012

Conclusion

Leap in performance requires infrastructure
changes:

Vectorization
Light-weight (array of) objects
Sub-event and across events parallelism

Upcoming tasks
Concretely evaluate the potential gain brought by
improving data locality
Prototype adapting the Geant4 particle propagation
components to use GPGPU and sub-event parallelism.

22

