IF-08 PRD-1
“Enhance and combine existing
modalities to increase signal-to-noise and reconstruction fidelity”

Low-Threshold TPCs

based on the Lols:

IF8 IFO_Shawn_Westerdale_and_Michael_Clark-133 (S. Westerdale)
NE7_NF9-IF8 IFO_Kaixuan_Ni-011 (K. Ni, J. Xu)



https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF8_IF0_Shawn_Westerdale_and_Michael_Clark-133.pdf
https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF7_NF9-IF8_IF0_Kaixuan_Ni-011.pdf

Instrumentation requirements to achieve physics goals

Noble liquid TPCs for electron-counting (S2-only)

analyses
o LXe, LAr, LNe?
o LAr+Xe, other dopants

Low energy thresholds, targeting scale of target’s
ionization energy: O(10 eVee)

Low backgrounds:
o <1 events/kg/day with 0.5-keVnr threshold for reactor
neutrinos

o O(10° events/keV_/ton/year) for °B solar
neutrinos
High-granularity and Single-PE sensitive
photosensors to detect S2 light
Stable high voltage and electrodes system
High liquid purity
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Significant instrumentation challenges

e | ow-energy backgrounds

o  Spurious electron backgrounds (chemical impurities, photo-ionization, charge build-up)
m  Not well-understood—R&D needed to characterize SEs
m  Chemical impurities—Improved purification, including in situ liquid-phase purification
m  Charge build-up—Optimize electric field to reduce charge accumulation at liquid surface

o  Electronic recoils (no electronic/nuclear recoil discrimination)
m Internal B emitters like 3H, 3°Ar, 8K, 220222Rn decay chains — improved isotope purification
m Yy-emitters in detector components — radiopure photosensor development
m  Cosmogenic nuclides —better understand cosmogenic activation rates

e | owering thresholds
o  Uncertainties in low-energy electronic and nuclear recoil charge yields — ex situ calibration
m  Observations of the Migdal effect are also helpful to support its use in low-mass DM analyses
o  Electric field optimization—ex situ calibration at variable fields
o  Doping (low-ionization energy dopants for higher charge yields, low-A targets for higher-energy nuclear recoils)
m  Need high purity and stability—R&D to develop high-purity doping and mixing techniques
m  Study effects on TPC response—ex situ calibration with doping



Relevant physics areas

e Low-mass dark matter with 1 MeV-10 GeV masses through recoil channels
o Dark matter with nuclear and electronic couplings

e Light dark matter with 10 eV—1 keV masses through absorption channels
o Axion-like particles and hidden photons

e Measurements of CEVNS from artificial neutrino sources (Reactors)
Sterile neutrino searches with short baselines

Non-standard neutrino interactions and new boson mediators

Neutrino magnetic moment

Neutron distribution in nucleus (input to nuclear equations of state)

Weak mixing angle

e Measurements of CEVNS from natural neutrino sources

o  Supernova neutrinos
o  Solar neutrino measurements (mostly B neutrinos)

o O O O O



Relevant cross-connections (e.g., other topical groups, other white papers)

e CFO01 WP2: “The landscape of low threshold detection in the next decade”
e CFO01 WP3: “Calibrations and Backgrounds for Direct Detection”
e NF white paper on CEVNS measurements
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