Global fit for 4-fermion operators & operators at Z-pole

Yong Du

email: yongdu@itp.ac.cn

EF04 Topical Group Community Meeting, Nov 19 2021

In collaboration with Jorge de Blas, Christophe Grojean, Jiayin Gu, Michael Peskin, Junping Tian, Marcel Vos, Eleni Vryonidou

Short overview

Global fit with precision measurements from LEP, SLC, Tevatron ect has helped in constraining Higgs and top quark masses. HL-LHC and future colliders are at least precision machines, making them powerful tools for new physics discovery.

Four-fermion operators get more and more attention perhaps after the discovery of neutrino oscillations in particular. Various low-energy experiments are sensitive to those operators (COHERENT, CCFR, neutrino oscillation, etc.)

Today I will present our preliminary results on Z/W-pole and 4-fermion operators from a global fit.

For the pole observables

LHC Higgs Cross Section Working Group, 2017

$$\begin{split} \mathscr{L}_{\text{eff}}^{vff} &\supset eA_{\mu} \sum_{f \in u, d, e} Q_{f} \left(\bar{f} \bar{\sigma}_{\mu} f + f^{c} \sigma_{\mu} \bar{f}^{c} \right) \\ &+ \frac{g_{L}}{\sqrt{2}} \left(W_{\mu}^{+} \bar{u} \bar{\sigma}_{\mu} \left(V + \delta g_{L}^{Wq} \right) d + W_{\mu}^{+} \bar{u} \bar{\sigma}_{\mu} \delta g_{R}^{Wq} d_{R} + W_{\mu}^{+} \bar{\nu} \bar{\sigma}_{\mu} \left(\mathbb{I} + \delta g_{L}^{W\ell} \right) e + \text{ h.c. } \right) \\ &+ \sqrt{g_{L}^{2} + g_{Y}^{2}} Z_{\mu} \left[\sum_{f \in u, d, e, \nu} \bar{f} \bar{\sigma}_{\mu} \left(\mathbb{I} T_{f}^{3} - \mathbb{I} s_{\theta}^{2} Q_{f} + \delta g_{L}^{Zf} \right) f + \sum_{f^{c} \in u^{c}, d^{c}, e^{c}} f^{c} \sigma_{\mu} \left(-\mathbb{I} s_{\theta}^{2} Q_{f} + \delta g_{R}^{Zf} \right) \bar{f}^{c} \right] \end{split}$$

Yong Du

For the pole observables

LHC Higgs Cross Section Working Group, 2017

$$\begin{split} \mathscr{L}_{\text{eff}}^{\text{vff}} &\supset eA_{\mu} \sum_{f \in u, d, e} \mathcal{Q}_{f} \Big(\bar{f} \bar{\sigma}_{\mu} f + f^{c} \sigma_{\mu} \bar{f}^{c} \Big) \\ &+ \frac{g_{L}}{\sqrt{2}} \left(W_{\mu}^{+} \bar{u} \bar{\sigma}_{\mu} \left(V + \delta g_{L}^{Wq} \right) d + W_{\mu}^{+} \bar{u} \bar{\sigma}_{\mu} \delta g_{R}^{Wq} d_{R} + W_{\mu}^{+} \bar{\nu} \bar{\sigma}_{\mu} \left(\mathbb{I} + \delta g_{L}^{W\ell} \right) e + \text{ h.c. } \right) \\ &+ \sqrt{g_{L}^{2} + g_{Y}^{2}} Z_{\mu} \left[\sum_{f \in u, d, e, \nu} \bar{f} \bar{\sigma}_{\mu} \left(\mathbb{I} T_{f}^{3} - \mathbb{I} s_{\theta}^{2} \mathcal{Q}_{f} + \delta g_{L}^{Zf} \right) f + \sum_{f^{c} \in u^{c}, d^{c}, e^{c}} f^{c} \sigma_{\mu} \left(-\mathbb{I} s_{\theta}^{2} \mathcal{Q}_{f} + \delta g_{R}^{Zf} \right) \bar{f}^{c} \right] \end{split}$$

 $m_W \rightarrow (1 + \delta m) m_W$

Notations

$$\mathcal{L} \supset \frac{1}{v^2} c_i^{IJKL} [\mathcal{O}_i]_{IJKL}$$

One flavor $(I = 1 \dots 3)$	Two flavors $(I < J = 13)$
$\left[O_{\ell\ell}\right]_{IIII} = \frac{1}{2} \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_I\right) \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_I\right)$	$\left[O_{\ell\ell}\right]_{IIJJ} = \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_I\right) \left(\bar{\ell}_J \bar{\sigma}_\mu \ell_J\right)$
$[O_{\ell e}]_{IIII} = \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_I\right) \left(e_I^c \sigma_\mu \bar{e}_I^c\right)$	$\left[O_{\ell\ell}\right]_{IJJI} = \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_J\right) \left(\bar{\ell}_J \bar{\sigma}_\mu \ell_I\right)$
	$[O_{\ell e}]_{IIJJ} = \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_I\right) \left(e_J^c \sigma_\mu \bar{e}_J^c\right)$
$\left[O_{ee}\right]_{IIII} = \frac{1}{2} \left(e_I^c \sigma_\mu \bar{e}_I^c\right) \left(e_I^c \sigma_\mu \bar{e}_I^c\right)$	$\left[O_{\ell e}\right]_{JJII} = \left(\underline{\ell}_J \bar{\sigma}_\mu \ell_J\right) \left(e_I^c \sigma_\mu \bar{e}_I^c\right)$
	$\left[O_{\ell e}\right]_{IJJI} = \left(\ell_I \bar{\sigma}_\mu \ell_J\right) \left(e_J^c \sigma_\mu \bar{e}_I^c\right)$
	$\left[O_{ee}\right]_{IIJJ} = \left(e_I^c \sigma_\mu \bar{e}_I^c\right) \left(e_J^c \sigma_\mu \bar{e}_J^c\right)$

LHC Higgs Cross Section Working Group, 2017

*Currently only flavor-conserving observables/operators are included in our fit.

Notations

$$\mathcal{L} \supset \frac{1}{v^2} c_i^{IJKL} [\mathcal{O}_i]_{IJKL}$$

One flavor $(I = 1 \dots 3)$	Two flavors $(I < J = 13)$
$\left[O_{\ell\ell}\right]_{IIII} = \frac{1}{2} \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_I\right) \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_I\right)$	$\left[O_{\ell\ell}\right]_{IIJJ} = \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_I\right) \left(\bar{\ell}_J \bar{\sigma}_\mu \ell_J\right)$
$\left[O_{\ell e}\right]_{IIII} = \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_I\right) \left(e_I^c \sigma_\mu \bar{e}_I^c\right)$	$\left \left[O_{\ell\ell} \right]_{IJJI} = \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_J \right) \left(\bar{\ell}_J \bar{\sigma}_\mu \ell_I \right) \right $
	$\left[O_{\ell e}\right]_{IIJJ} = \left(\bar{\ell}_I \bar{\sigma}_\mu \ell_I\right) \left(e_J^c \sigma_\mu \bar{e}_J^c\right)$
$\left[O_{ee}\right]_{IIII} = \frac{1}{2} \left(e_I^c \sigma_\mu \bar{e}_I^c\right) \left(e_I^c \sigma_\mu \bar{e}_I^c\right)$	$\left[O_{\ell e}\right]_{JJII} = \left(\bar{\ell}_J \bar{\sigma}_\mu \ell_J\right) \left(e_I^c \sigma_\mu \bar{e}_I^c\right)$
	$\left[O_{\ell e}\right]_{IJJI} = \left(\ell_I \bar{\sigma}_{\mu} \ell_J\right) \left(e_J^c \sigma_{\mu} \bar{e}_I^c\right)$
	$\left[\left[O_{ee} \right]_{IIJJ} = \left(e_I^c \sigma_\mu \bar{e}_I^c \right) \left(e_J^c \sigma_\mu \bar{e}_J^c \right) \right]$

LHC Higgs Cross Section Working Group, 2017

*Currently only flavor-conserving observables/operators are included in our fit.

$$\delta m = \frac{1}{2} \delta g_{L,W\ell}^{11} + \frac{1}{2} \delta g_{L,W\ell}^{22} - \frac{1}{4} c_{\ell\ell}^{1221}$$

Yong Du

Observables: LEP-Z, W

#	Observables	Exp results [central, 1σ error]	Refs	SM prediction Gfitter	Definition
1	Γ_Z [GeV]	[2.4952, 0.0023]	LEP-Z	2.4950	$\sum\limits_{f} \Gamma(Z o f \overline{f})$
2	$\sigma_{ m had}$ [nb]	[41.541, 0.037]	LEP-Z	41.484	$rac{12\pi}{m_Z^2}rac{\Gamma(Z ightarrow ee)\Gamma(Z ightarrow qq)}{\Gamma_Z^2}$
3	R_e	[20.804, 0.050]	<u>LEP-Z</u>	20.743	$rac{\sum\limits_{q} \Gamma(Z ightarrow qq)}{\Gamma(Z ightarrow ee)}$
4	R_{μ}	[20.785, 0.033]	LEP-Z	20.743	$\frac{\sum\limits_{q} \Gamma(Z \rightarrow qq)}{\Gamma(Z \rightarrow \mu \mu)}$
5	$R_{ au}$	[20.764, 0.045]	LEP-Z	20.743	$rac{\sum\limits_{q} \Gamma(Z ightarrow qq)}{\Gamma(Z ightarrow au au)}$
6	$A_{ m FB}^{0,e}$	[0.0145, 0.0025]	LEP-Z	0.0163	$rac{3}{4}A_e^2$
7	$A_{ m FB}^{0,\mu}$	[0.0169, 0.0013]	LEP-Z	0.0163	$rac{3}{4}A_eA_\mu$
8	$A_{ m FB}^{0, au}$	[0.0188, 0.0017]	LEP-Z	0.0163	$rac{3}{4}A_eA_ au$
9	R_b	[0.21629, 0.00066]	LEP-Z	0.21578	$rac{\Gamma(Z ightarrow bb)}{\sum\limits_{q}\Gamma(Z ightarrow qq)}$
10	R_c	[0.1721, 0.0030]	LEP-Z	0.17226	$rac{\Gamma(Z ightarrow cc)}{\sum\limits_{q}\Gamma(Z ightarrow qq)}$
11	$A_b^{ m FB}$	[0.0992, 0.0016]	LEP-Z	0.1032	$rac{3}{4}A_eA_b$
12	$A_c^{ m FB}$	[0.0707, 0.0035]	LEP-Z	0.0738	$\frac{3}{4}A_eA_c$
13	A_e	[0.1516, 0.0021]	LEP-Z	0.1472	$rac{\Gamma(Z ightarrow e_L e_L) - \Gamma(Z ightarrow e_R e_R)}{\Gamma(Z ightarrow ee)}$
14	A_{μ}	[0.142, 0.015]	LEP-Z	0.1472	$rac{\Gamma(Z ightarrow \mu_L \mu_L) - \Gamma(Z ightarrow \mu_R \mu_R)}{\Gamma(Z ightarrow \mu\mu)}$
15	$A_{ au}$	[0.136, 0.015]	LEP-Z	0.1472	$\frac{\Gamma(Z \rightarrow \tau_L \tau_L) - \Gamma(Z \rightarrow \tau_R \tau_R)}{\Gamma(Z \rightarrow \tau \tau)}$
16	A_e	[0.1498, 0.0049]	LEP-Z	0.1472	$rac{\Gamma(Z ightarrow e_L e_L) - \Gamma(Z ightarrow e_R e_R)}{\Gamma(Z ightarrow au au)}$
17	$A_{ au}$	[0.1439, 0.0043]	LEP-Z	0.1472	$\frac{\Gamma(Z \rightarrow \tau_L \tau_L) - \Gamma(Z \rightarrow \tau_R \tau_R)}{\Gamma(Z \rightarrow \tau \tau)}$
18	A_b	[0.923, 0.020]	LEP-Z	0.935	$\frac{\Gamma(Z \rightarrow b_L b_L) - \Gamma(Z \rightarrow b_R b_R)}{\Gamma(Z \rightarrow bb)}$
19	A_c	[0.670, 0.027]	LEP-Z	0.668	$rac{\Gamma(Z ightarrow c_L c_L) - \Gamma(Z ightarrow c_R c_R)}{\Gamma(Z ightarrow c_C)}$
20	A_s	[0.895, 0.091]	<u>SLD</u>	0.935	$rac{\Gamma(Z ightarrow s_L s_L) - \Gamma(Z ightarrow s_R s_R)}{\Gamma(Z ightarrow ss)}$
21	R_{uc}	[0.166, 0.009]	PDG2012	0.1724	$rac{\Gamma(Z ightarrow uu) + \Gamma(Z ightarrow cc)}{2\sum\limits_q \Gamma(Z ightarrow qq)}$
22	g^u_A	[0.501, 0.110]	<u>D0</u>	0.501	Axial-vector Zuu
23	g_V^u	[0.201, 0.112]	<u>D0</u>	0.192	Vector Zuu
24	g^d_A	[-0.497, 0.165]	<u>D0</u>	-0.502	Axial-vector Zdd
25	g^d_A	[-0.351, 0.251]	<u>D0</u>	-0.347	Vector Zdd

W-pole observables

#	Observables	Exp results [central, error]	Refs	SM prediction	Definition
1	m_W [GeV]	[80.385, 0.015]	<u>CDF & D0</u>	80.364	$rac{g_L v}{2}(1+\delta m)$
2	$\Gamma_W [{\rm GeV}]$	[2.085, 0.042]	PDG2012	2.091	$\sum\limits_{f} \Gamma(W o ff')$
3	${\rm Br}(W\to e\nu)$	[0.1071, 0.0016]	LEP-W	0.1083	$rac{\Gamma(W ightarrow e u)}{\sum\limits_{f} \Gamma(W ightarrow ff')}$
4	Br($W o \mu u$)	[0.1063, 0.0015]	LEP-W	0.1083	$rac{\Gamma(W o \mu u)}{\sum\limits_{f} \Gamma(W o f f')}$
5	${\rm Br}(W\to\tau\nu)$	[0.1138, 0.0021]	LEP-W	0.1083	$rac{\Gamma(W o au \; u)}{\sum\limits_{f} \Gamma(W o ff')}$
6	R_{Wc}	[0.49, 0.04]	PDG2012	0.50	$rac{\Gamma(W ightarrow c s)}{\Gamma(W ightarrow u d) + \Gamma(W ightarrow c s)}$
7	R_{σ}	[0.998, 0.041]	<u>CMS</u>	1.000	$\frac{g_L^{Wq_3}}{g_{L,\mathrm{SM}}^{Wq_3}}$

Observables: LEP-Z, W

#	Observables	Exp results [central, 1σ error]	Refs	SM prediction Gfitter	Definition
1	Γ_Z [GeV]	[2.4952, 0.0023]	<u>LEP-Z</u>	2.4950	$\sum\limits_{f} \Gamma(Z o f \overline{f})$
2	$\sigma_{ m had}$ [nb]	[41.541, 0.037]	<u>LEP-Z</u>	41.484	$rac{12\pi}{m_Z^2}rac{\Gamma(Z ightarrow ee)\Gamma(Z ightarrow qq)}{\Gamma_Z^2}$
3	R_e	[20.804, 0.050]	<u>LEP-Z</u>	20.743	$rac{\sum\limits_{q} \Gamma(Z ightarrow qq)}{\Gamma(Z ightarrow ee)}$
4	R_{μ}	[20.785, 0.033]	LEP-Z	20.743	$\frac{\sum\limits_{q} \Gamma(Z \rightarrow qq)}{\Gamma(Z \rightarrow \mu \mu)}$
5	$R_{ au}$	[20.764, 0.045]	<u>LEP-Z</u>	20.743	$rac{\sum\limits_{q} \Gamma(Z ightarrow qq)}{\Gamma(Z ightarrow au au)}$
6	$A_{ m FB}^{0,e}$	[0.0145, 0.0025]	LEP-Z	0.0163	$rac{3}{4}A_e^2$
7	$A_{ m FB}^{0,\mu}$	[0.0169, 0.0013]	LEP-Z	0.0163	$rac{3}{4}A_eA_\mu$
8	$A_{ m FB}^{0, au}$	[0.0188, 0.0017]	LEP-Z	0.0163	$rac{3}{4}A_eA_ au$
9	R_b	[0.21629, 0.00066]	LEP-Z	0.21578	$rac{\Gamma(Z ightarrow bb)}{\sum\limits_{q}\Gamma(Z ightarrow qq)}$
10	R_c	[0.1721, 0.0030]	LEP-Z	0.17226	$rac{\Gamma(Z ightarrow cc)}{\sum\limits_{q}\Gamma(Z ightarrow qq)}$
11	$A_b^{ m FB}$	[0.0992, 0.0016]	<u>LEP-Z</u>	0.1032	$rac{3}{4}A_eA_b$
12	$A_c^{ m FB}$	[0.0707, 0.0035]	LEP-Z	0.0738	$rac{3}{4}A_eA_c$
13	A_e	[0.1516, 0.0021]	LEP-Z	0.1472	$rac{\Gamma(Z ightarrow e_L e_L) - \Gamma(Z ightarrow e_R e_R)}{\Gamma(Z ightarrow ee)}$
14	A_{μ}	[0.142, 0.015]	LEP-Z	0.1472	$\frac{\Gamma(Z \rightarrow \mu_L \mu_L) - \Gamma(Z \rightarrow \mu_R \mu_R)}{\Gamma(Z \rightarrow \mu \mu)}$
15	$A_{ au}$	[0.136, 0.015]	LEP-Z	0.1472	$rac{\Gamma(Z ightarrow au_L au_L) - \Gamma(Z ightarrow au_R au_R)}{\Gamma(Z ightarrow au au)}$
16	A_e	[0.1498, 0.0049]	LEP-Z	0.1472	$rac{\Gamma(Z ightarrow e_L e_L) - \Gamma(Z ightarrow e_R e_R)}{\Gamma(Z ightarrow au au)}$
17	$A_{ au}$	[0.1439, 0.0043]	LEP-Z	0.1472	$rac{\Gamma(Z ightarrow au_L au_L) - \Gamma(Z ightarrow au_R au_R)}{\Gamma(Z ightarrow au au)}$
18	A_b	[0.923, 0.020]	LEP-Z	0.935	$rac{\Gamma(Z ightarrow b_L b_L) - \Gamma(Z ightarrow b_R b_R)}{\Gamma(Z ightarrow bb)}$
19	A_c	[0.670, 0.027]	LEP-Z	0.668	$rac{\Gamma(Z ightarrow c_L c_L) - \Gamma(Z ightarrow c_R c_R)}{\Gamma(Z ightarrow cc)}$
20	A_s	[0.895, 0.091]	<u>SLD</u>	0.935	$rac{\Gamma(Z ightarrow s_L s_L) - \Gamma(Z ightarrow s_R s_R)}{\Gamma(Z ightarrow ss)}$
21	R_{uc}	[0.166, 0.009]	PDG2012	0.1724	$rac{\Gamma(Z ightarrow uu) + \Gamma(Z ightarrow cc)}{2\sum\limits_q \Gamma(Z ightarrow qq)}$
22	g^u_A	[0.501, 0.110]	<u>D0</u>	0.501	Axial-vector Zuu
23	g_V^u	[0.201, 0.112]	<u>D0</u>	0.192	Vector Zuu
24	g^d_A	[-0.497, 0.165]	<u>D0</u>	-0.502	Axial-vector Zdd
25	g^d_A	[-0.351, 0.251]	<u>D0</u>	-0.347	Vector Zdd

W-pole observables

#	Observables	Exp results [central, error]	Refs	SM prediction	Definition
1	$m_W[{ m GeV}]$	[80.385, 0.015]	<u>CDF & D0</u>	80.364	$rac{g_L v}{2}(1+\delta m)$
2	$\Gamma_W [{\rm GeV}]$	[2.085, 0.042]	PDG2012	2.091	$\sum\limits_{f} \Gamma(W o f f')$
3	Br($W ightarrow e u$)	[0.1071, 0.0016]	LEP-W	0.1083	$rac{\Gamma(W ightarrow e u)}{\sum\limits\limits_{f} \Gamma(W ightarrow f f')}$
4	Br($W o \mu u$)	[0.1063, 0.0015]	LEP-W	0.1083	$rac{\Gamma(W o \mu u)}{\sum\limits\limits_{f} \Gamma(W o f f')}$
5	Br($W ightarrow au u$)	[0.1138, 0.0021]	LEP-W	0.1083	$rac{\Gamma(W{ ightarrow} au u)}{\sum\limits\limits_{f}\Gamma(W{ ightarrow}ff')}$
6	R_{Wc}	[0.49, 0.04]	PDG2012	0.50	$\frac{\Gamma(W \rightarrow c \ s)}{\Gamma(W \rightarrow u \ d) + \Gamma(W \rightarrow c \ s)}$
7	R_{σ}	[0.998, 0.041]	<u>CMS</u>	1.000	$\frac{\frac{g_L^{Wq_3}}{g_{L,\mathrm{SM}}^{Wq_3}}$

lav	or-violating ones	5			
#	Observables	Current upper bound	Refs	SM prediction	Definition
1	Br($Z ightarrow e \mu$)	$7.5 imes10^{-7}$	ATLAS	0	$rac{\Gamma(Z ightarrow e\mu)}{\sum\limits_{f}\Gamma(Z ightarrow ff')}$
2	Br($Z ightarrow e au$)	OT include	d <u>fo</u> r	won	$\Gamma(Z ightarrow e au) \ \overline{\sum\limits_{f} \Gamma(Z ightarrow ff')}$
3	Br($Z ightarrow \mu au$)	$1.2 imes 10^{-5}$	DELPHI	0	$rac{\Gamma(Z ightarrow \mu au)}{\sum\limits_{f} \Gamma(Z ightarrow ff')}$
4	Br($t ightarrow Zq$)	$5.0 imes10^{-4}$	<u>CMS</u>	0	$rac{\Gamma(t ightarrow Zu) + \Gamma(t ightarrow Zc)}{\sum\limits_{f} \Gamma(Z ightarrow ff')}$

Fermion-pair production

•
$$\sigma(e^+e^- \rightarrow \mu^+\mu^-)$$
, $\sigma_{\rm FB}(e^+e^- \rightarrow \mu^+\mu^-)$

•
$$\sigma(e^+e^- \rightarrow \tau^+\tau^-)$$
, $\sigma_{\rm FB}(e^+e^- \rightarrow \tau^+\tau^-)$

• $d\sigma(e^+e^- \rightarrow e^+e^-)/d\cos\theta$

- GF from τ decay (PDG)
- Michel parameters from polarized muon decay (PSI)

Fermion-pair production

•
$$\sigma(e^+e^- \rightarrow \tau^+\tau^-)$$
, $\sigma_{\rm FB}(e^+e^- \rightarrow \tau^+\tau^-)$

• $d\sigma(e^+e^- \rightarrow e^+e^-)/d\cos\theta$

- GF from τ decay (PDG)
- Michel parameters from polarized muon decay (PSI)

Fermion-pair production

•
$$\sigma(e^+e^- \rightarrow \mu^+\mu^-)$$
, $\sigma_{\rm FB}(e^+e^- \rightarrow \mu^+\mu^-)$
— Flat direction lifted by ${}^{(-)}_{\nu}{}_{\mu}e^-$ (CHARM-II)

•
$$\sigma(e^+e^- \rightarrow \tau^+\tau^-)$$
, $\sigma_{\rm FB}(e^+e^- \rightarrow \tau^+\tau^-)$

•
$$d\sigma(e^+e^- \rightarrow e^+e^-)/d\cos\theta$$

— Accidental flat direction for unpolarized beams at LEP lifted by PVES (SLAC-E158)

- GF from τ decay (PDG)
- Michel parameters from polarized muon decay (PSI)

Fermion-pair production

•
$$\sigma(e^+e^- \rightarrow \mu^+\mu^-)$$
, $\sigma_{FB}(e^+e^- \rightarrow \mu^+\mu^-)$
— Flat direction lifted by ${}^{(-)}_{\nu}{}_{\mu}e^-$ (CHARM-II)

•
$$\sigma(e^+e^- \rightarrow \tau^+\tau^-)$$
, $\sigma_{\rm FB}(e^+e^- \rightarrow \tau^+\tau^-)$

•
$$d\sigma(e^+e^- \rightarrow e^+e^-)/d\cos\theta$$

— Accidental flat direction for unpolarized beams at LEP lifted by PVES (SLAC-E158)

- GF from τ decay (PDG)
- Michel parameters from polarized muon decay (PSI)

— Michel parameters from polarized tau decay with upgraded SuperKEKB (Banerjee and Roney's <u>talk</u> during last EF04 topical group meeting)

$$\mathcal{M}_{\text{th.}}^{2} = \mathcal{M}_{\text{SM}}^{2} + 2\text{Re}\left(\mathcal{M}_{\text{SM}}\mathcal{M}_{\text{EFT}}^{\dagger}\right) + \mathcal{M}_{\text{EFT}}^{2}$$
$$\simeq \mathcal{M}_{\text{SM}}^{2} + 2\text{Re}\left(\mathcal{M}_{\text{SM}}^{\text{tree}}\mathcal{M}_{\text{EFT}}^{\dagger}\right) + \mathcal{O}\left(\alpha^{2}\delta g, \delta g^{2}\right)$$

$$\mathcal{M}_{\text{th.}}^{2} = \mathcal{M}_{\text{SM}}^{2} + 2\text{Re}\left(\mathcal{M}_{\text{SM}}\mathcal{M}_{\text{EFT}}^{\dagger}\right) + \mathcal{M}_{\text{EFT}}^{2}$$
$$\simeq \mathcal{M}_{\text{SM}}^{2} + 2\text{Re}\left(\mathcal{M}_{\text{SM}}^{\text{tree}}\mathcal{M}_{\text{EFT}}^{\dagger}\right) + \mathcal{O}\left(\alpha^{2}\delta g, \delta g^{2}\right)$$

$$\chi^{2} = \sum_{ij} \left[O_{i,\text{exp}} - O_{i,\text{th}} \right] \sigma_{ij}^{-2} \left[O_{j,\text{exp}} - O_{j,\text{th}} \right]$$

Yong Du

Optimistic: One operator at a time.

Conservative: Full correlation among observables are taken into account.

Optimistic: One operator at a time.

Conservative: Full correlation among observables are taken into account.

Optimistic: One operator at a time.

Conservative: Full correlation among observables are taken into account.

Observables: Future colliders

Future colliders as precision machines

Observables: Future colliders

Future colliders as precision machines

	Current and future EWPO uncertainties										
(10^{-3})	L/S	CEPC	FCC-ee	ILC	CLIC	(10^{-3})	L/S	CEPC	FCC-ee	ILC	CLIC
$M_Z~({ m GeV})$	2.1	0.5	0.1	_	_	A_e^{**}	14.3	_	0.11	1.00	4.20
$\Gamma_Z ~({ m GeV})$	2.3	0.5	0.1	_		A_{μ}^{**}	102.0	_	0.15	5.41	26.5
$\sigma_{ m had}~(m nb)$	37.0	5.0	5.0	—	—	A_{τ}^{**}	102.0	—	0.3	5.71	37.4
R_e	2.41	0.6	0.3	1.14	2.70	R_b	3.06	0.2	0.3	1.06	1.76
R_{μ}	1.59	0.1	0.05	1.14	2.70	$\overline{R_c}$	17.4	1.13	1.5	5.03	5.56
$R_{ au}$	2.17	0.2	0.1	1.15	5.99	$A_{ m FB}^{0,b}$	15.5	1.0	—		—
$A_{ m FB}^{0,e}$	154.0	5.0	—		—	$A_{ m FB}^{0,c}$	47.5	3.08	—		
$A_{ m FB}^{0,\mu}$	80.1	3.0	—		—	A_b	21.4	—	3.0	$0.64 \\ 3.05$	4.03† 4.88
$A_{ m FB}^{0, au}$	104.8	5.0	—			A_c	40.4	—	8.0	$2.12^{+}_{-8.27}$	3.01† 8.49
A_e^*	33.3					A_s	97.3			—	
A_{τ}^*	29.2			—	—	source:	[60, 101]	[<mark>69</mark>]	[<mark>67</mark>]		

de Blas, Durieux, Grojean, Gu, Paul, JHEP 2019

Yong Du

Yong Du

ITP CAS

Yong Du

Correlations

FCC-ee case

	cLL1221	cLL1122	cLe1122	cLe2211	cee1122	cLL1331	cLL1133	cLe1133PcLe3311	cee1133	cLL2332	ImcLe1221	RecLe1221
δgLWI11	0.477	-0.0309	0.145	-0.163	-0.13	0.182	-0.0438	0.00387	-0.0436	-0.107	-6.59e-07	-1.27e-10
δgLWI22	0.465	-0.116	-0.154	0.181	-0.0415	-0.346	0.0833	-0.00741	0.0828	0.0569	-9.27e-07	-1.42e-10
δgLWI33	-0.881	0.136	0.00333	-0.0111	0.162	0.189	-0.0455	0.00401	-0.0452	0.0604	1.47e-06	-2.09e-10
δgLZe11	-0.114	0.0207	0.00927	-0.012	0.0185	-0.0545	0.0134	-0.00159	0.0132	-0.0171	2.12e-07	9.51e-10
δgLZe22	0.145	-0.0246	-0.01	0.0122	-0.0238	0.0698	-0.0165	0.00113	-0.0165	0.0218	-2.75e-07	-1.56e-09
δgLZe33	0.117	-0.0199	-0.00757	0.00937	-0.0194	0.0564	-0.013	0.000392	-0.0132	0.0176	-2.23e-07	-1.41e-09
δgRZe11	0.113	-0.0205	-0.00925	0.012	-0.0184	0.0541	-0.0133	0.00158	-0.0131	0.0169	-2.1e-07	-9.42e-10
δgRZe22	-0.145	0.0245	0.00978	-0.0119	0.0237	-0.0694	0.0164	-0.00112	0.0165	-0.0217	2.73e-07	1.62e-09
δgRZe33	-0.116	0.0197	0.00743	-0.00921	0.0192	-0.0559	0.0129	-0.000358	0.0131	-0.0174	2.21e-07	1.49e-09
δgRZd33	-0.00812	0.00137	0.000513	-0.000633	0.00135	-0.00388	0.000918	-5.78e-05	0.00092	-0.00122	1.52e-08	7.89e-11
δgLZu22	-0.00772	0.0013	0.000499	-0.000615	0.00128	-0.00396	0.00094	-6.19e-05	0.000937	-0.00123	1.46e-08	7.91e-11
δgRZu22	0.00707	-0.00119	-0.000426	0.00053	-0.00118	0.00316	-0.000749	5.14e-05	-0.000747	0.000999	-1.32e-08	-6.52e-11
cLL1111	0.000195	-3.07e- 05	-1.93e-05	2.43e-05	-3.67e-05	9.49e-05	-2.43e-05	-4.37e-07	-2.26e-05	2.96e-05	-9.81e-07	-1.65e-12
cLe1111	-0.000657	0.000115	5.65e-05	-7.24e-05	0.000112	-0.000318	7.94e-05	-5.43e-06	7.62e-05	-9.9e-05	9.13e-07	5.51e-12

Beam polarization @ILC, CLIC

ITP CAS

Beam polarization @ILC, CLIC

Projections currently missing, it would be desirable to include them in the fit to lift the flat direction.

Beam polarization @ILC, CLIC

Projections currently missing, it would be desirable to include them in the fit to lift the flat direction.

Currently no constraints on c_i^{2222} operators. Muon collider? ν_{μ} - μ scattering?

Summary and outlook

- Constraints on Z/W-pole and 4-fermion operators are obtained in the conservative & optimistic scenarios. Constraints from the former are in general weaker than the latter, suggesting measurements of observable correlations.
- Preliminary results are obtained for future colliders (CEPC, FCC-ee, ILC, CLIC). CEPC and FCC-ee dominate measurements of operators considered here.
- For operators considered here, one flat direction exists between (1,3) generation leptons. Beam polarizations at ICL and CLIC will help and it would be desirable to obtain the projections for future colliders.

#	Input parameters	Exp central value	Refs
1	$G_F[{\sf GeV}^{-2}]$	$1.16637 imes 10^{-5}$	PDG2012
2	m_Z [GeV]	91.1875	LEP-Z
3	$lpha_{ ext{E.M.}}(m_Z)$	$7.755 imes10^{-3}$	Burkhardt:2011ur

Will be updated for our final global fit result.

Correlations

CEPC

LEP	cLL1221	cLL1122	cLe1122	cLe2211	cee1122	cLL1331
cLL1221	1	-0.23	-0.178	0.182	-0.562	-0.396
cLL1122	-0.23	1	-0.739	0.76	-0.673	0.266
cLe1122	-0.178	-0.739	1	-0.972	0.773	0.227
cLe2211	0.182	0.76	-0.972	1	-0.781	-0.234
cee1122	-0.562	-0.673	0.773	-0.781	1	0.0726
cLL1331	-0.396	0.266	0.227	-0.234	0.0726	1

FCCee	1	-0.152	0.00551	0.00177	-0.187	-0.102
	-0.152	1	-0.672	0.822	-0.912	0.0328
	0.00551	-0.672	1	-0.83	0.743	0.0582
	0.00177	0.822	-0.83	1	-0.79	-0.0679
	-0.187	-0.912	0.743	-0.79	1	0.00206
	-0.102	0.0328	0.0582	-0.0679	0.00206	1

1 -0.204 -0.00231 0.0127 -0.247 -0.143 -0.204 -0.662 0.795 -0.871 0.0584 1 -0.00231 -0.662 -0.844 0.727 0.0994 1 0.0127 0.795 -0.844 -0.114 1 -0.768 -0.247 -0.871 0.727 -0.768 0.00621 1 -0.114 0.00621 -0.143 0.0584 0.0994 1

ILCS1

1	-0.225	-0.174	0.178	-0.554	-0.491
-0.225	1	-0.749	0.771	-0.684	0.296
-0.174	-0.749	1	-0.972	0.78	0.25
0.178	0.771	-0.972	1	-0.789	-0.257
-0.554	-0.684	0.78	-0.789	1	0.113
-0.491	0.296	0.25	-0.257	0.113	1

CLICS1

1	-0.238	-0.184	0.189	-0.561	-0.374
-0.238	1	-0.737	0.758	-0.668	0.252
-0.184	-0.737	1	-0.972	0.779	0.215
0.189	0.758	-0.972	1	-0.788	-0.22
-0.561	-0.668	0.779	-0.788	1	0.0703
-0.374	0.252	0.215	-0.22	0.0703	1

Setup validation

