
MetaCat and Tokens
Igor Mandrichenko
FIFE meeting
10/14/2021



Goals for this presentation

● To present another use case for the Tokens Task Force to consider
○ Web based application with client side components 

● To see how well current MetaCat implementation and assumptions agree 
with the direction of the Tokens Task Force

● To see what needs to be adjusted and where
○ The earlier the better



What is MetaCat ?

MetaCat is a Metadata Catalog 
designed to be used in data 
management systems

● Compatible but not dependent or 
integrated with Rucio

● Roughly same functionality as 
SAM metadata catalog

● Target experiment: DUNE
○ Not DUNE-centric



MetaCat Architecture

● Web server application
○ W3C standard HTTP(s)

● Server side components
○ Authentication
○ Data (REST)
○ GUI

● Client side components
○ HTTP/REST client
○ Web API
○ CLI
○ Token management



MetaCat authorization model
Mixed user/role-based 
authorization/ownership schema

● Namespace and Category can 
be owned by a user or a role

● User belongs to zero or more 
roles

● User identified by username
● User-role, ownership 

relationships are recorded in 
the MetaCat database



Tokens and Client Authentication
● MetaCat auth server acts as token 

issuer
● Implemented authentication 

mechanisms
○ Password (LDAP, local 

hashed)
○ Digest RFC2617
○ X.509

● Token is signed with secret key 
shared between auth, data and 
GUI servers

1. Contact authentication server
2. Obtain token
3. Store token locally and/or in memory
4. Until the token expires:

a. Present token to the data server
5. Go to (1) 



Tokens and Client Authentication

To accept tokens from other 
issuers: 

● Use public key encryption
● Have access to public keys of 

trusted issuers
● Trust authentication, 

authorization info stored in 
the token
○ Perhaps selectively 

based on the issuer



Client side components

Token Library structure:

MetaCat server URL -> token
MetaCat server URL -> token
...

Functions:

● Add token (URL, token)
● Get token (URL) -> token
● Export token -> text
● Import token <- text
● (purge expired - hidden from user)



GUI client
On successful authentication, 
MetaCat GUI gives the client a 
cookie with the token

Cookie expiration = token expiration

Authentication (for now): 

● password, local or LDAP
● X.509
● SSO is not implemented yet

HTTPS is used to secure the token 
transfer over the wire



Summary
● Token is the result of successful authentication using one of many 

implemented authentication mechanisms
○ Once the client is authenticated, their MetaCat access rights are determined by set of user’s roles 

and object ownership

● JSON Web Token (JWT) as defined by IETF in RFC7519
○ PyJWT - Python implementation
○ Symmetric or public key encryption/signature

● Token claims used so far (all standard JWT):
○ Issuer
○ Subject
○ Expiration
○ Issued
○ Not before
○ Token ID



Summary (2)

● Token includes:
○ Client identity (username as the value of the “subject” claim)
○ May include authorization information (currently does not)

■ User roles in addition to or instead of those written in the MetaCat DB

● Assumptions:
○ Public keys of trusted Token Issuers are available
○ MetaCat client API has access to the tokens, can find token for specific MetaCat server


