2L Fermilab

Valeri Lebedev
Fermilab

TIOTA review
Fermilab
Feb. 23, 2012



Objective
B Experimental test of Optical Stochastic cooling in IOTA

Outline

B Optical stochastic cooling principles
B Beam optics requirements
¢ Damping rates
¢ Cooling range
B Requirements to optical amplifier
B Future possible applications
B Conclusions
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Optical Stochastic Cooling

B Suggested by Zolotorev, Zholents and
Mikhailichenko (1994)

Never tested experimentally

OSC obeys the same principles as the
microwave stochastic cooling, but exploits the superior
bandwidth of optical amplifiers ~ 10" Hz

Undulator can be used as pickup & kicker

Pick-up and Kicker should be installed at locations with nonzero
1 and L cooling.

-

T )

/- bypass .
.'\

.
® [ /| | |J| L' | Y —}— (I

radiation pulse  amplifier

energy gain/loss OE ~sinlk oz )

~1 pun oz 1z particle delay

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012 3



MIT-Bates Proposal for Tevatron (2007)
i OSC Demo With Electrons ([

« OSC considered for p, ions at several facilities, still unproven

* Counteracts heating due to IBS, beam-beam (cooling of tails)
* OSC rates, luminosity gain strongly depend on achievable parameters

* Technical requirements for cooling of heavy particles are severe ($$%$)
* Optics of particles in bypass controlled to fraction of A
* Very strong wiggler fields
» Amplifier saturates far below optimal gain
* Diagnostics predictive of OSC required (cooling time of order hours)
* Demonstration of OSC with e- would point way to cooling at very high E, N
* OSC of electrons much faster (~1 sec)
* Modest technical requirements (wiggler, amplifier, chicane)
» Develop techniques to achieve OSC, study physics for scaling to high E, N

* Proposed at several facilities but not carried out

W, Frarkdin PAC 2007 5

B Some deficiencies of the proposal will be discussed later
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Main parameters of the Bates proposal (W. Franklin, PAC-2007)

Beam energy 300 MeV
SR transverse damping time 483s
Machine circumference 190.2 m
Number of particles per bunch 10°
Number on bunches 12
Rms horizontal emittance (SR equilibrium) 98*10” cm
Rms momentum spread (SR equilibrium) 1.64*10™*
Optical amplifier wave length 2 um
Optical amplifier bandwidth 10%
Optical gain (amplitude) 90
Delay in the chicane 6 mm
Undulator length / Number of periods 2m/ 20

F. Kartner, A. Siddiqui

20 ps, 1030um Laser 1.6nJ
20 MHz, 5W,0.25p.) -on
Undqutor W 32mwW
Radiation
Beam radius:
w. = S00um
Wesa = 20 UM
- > o =40 I
. ,.l'"" "“ln. 1 a———
0.2pJ
AuW 2mm L
H w,, = 3.5mm n=2 BaF, wedges, n=1.5, Imm
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Optical Stochastic Cooling Fundamentals

B The sequence of our consideration
¢ 6x6 matrix parameterization
e Matrix symplecticity is used
¢ Damping rates in linear regime
e Perturbation theory for symplectic motion
¢ Damping rates for large amplitudes
e Cooling range for finite amplitudes
e Correction factors for the finite amplitude
¢ Undulators
¢ Gain and power of optical amplifier
e Final expression for damping rates
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Transfer Matrix Parameterization

B Vertical plane is uncoupled and we omit it in further equations

B Matrix from point 1 to point 2 7
M, M, 0 M, Cx ] M, = [Z2(cos u+ e sin u)
1
M: M21 M22 O M26 X = 9X IB
M, M, 1 M, s M,, = /,Bl (cos t— e, sin u)
0 0 0 1 Ap/p.
M, =+ sin
O N\16 & Mz can be expressed 2 =P sinu .
through dispersion M,, = %COS/J \J/r;%{zsiny
_Mll MlZ MlG__Dl_ _DZ_ = =

M, M, My D1, = Dé - ,
0 0 1 1 1 - My =D,-M;D, —M,D,

M26 :Dé_Mle_Mzle'

B Symplecticity (M'UM=U)
binds up Ms1,Ms, and Mg, M, =>
B Ms is related to the partial slip

=> All matrix elements can be expressed through g,,,,D,,D;,M,, k=12

M51 = M21M16 _M11M26
Msz — M22M16 _M12M26
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Partial slip factor
B Partial momentum compaction and slip factor (from point 1 to

point 2) are related to Mse

~ Ap Ap , Ap Ap 1 Ap
M56—:M51D1—+M52D1—+M56 +

p p p p 7P
¢ Further we assume that v=c, i.e. 1/9*=0 and n,=-a, ,, .

ASl—) 2

N

B That results in [ Ms =MsD; +Mg,Di+ M,
¢ Note that Mg sign is positive if a particle with positive Ap moves faster
than the reference particle
T 3|

DISP_X&Y[m]

AR AR

Ii BETA_X BETA_Y DISP_X DISP_Y
- [ T | ] [ B [ -
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Damping Rates of Optical Stochastic Cooling Tl e

B Longitudinal kick 7 B0
& Ap D.D; |
— =xAs=x|M,_x+M,_6, +M,_ | 4 |
P P . Pickup 7 \ U
. 1(X1 ext /
B Tune shifts D,D; \ Bk m&;gg/

Rewriting above Eq. in matrix form,
adding the rest of the ring, and using
perturbation theory for symplectic
motion one obtains the tune shifts

M; - pickup-to-kicker matrix
M; - kicker-to-pickup matrix
M = MiM; - ring matrix

1, ; H= i
0Q, :Evk UM_ UM, Uy, Mv, = AV,

where U is unit symplectic matrix

B Expressing matrix elements and eigen- P _E(M Ry )
. X 1 56
vectors through Twiss parameters one 2%
obtains the cooling rates: A = —%I\?I156
A+d =—=M

B That yields that the sum of the decrementsis| "7~ 5 "k
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Sample Lengthening on Pickup-to-Kicker Travel

B Zero length sample lengthens on its way from pickup-to-kicker

0.’ = [(M x+M, 6, +M_Bf f(x6, p)ixds,dp,

¢ Performin_g in‘regm’rion one obtains for Gaussian distribution

2
S

2 2 2
Opse = 8(,8le51 - 2O[IOIVI151M152 T 7/p|\/|152 )
2 2 ’
Oxp =0, <M151D|0 T Mlsz DP T Mlss)z

2

2
Ops =Opse T O,

¢ Both Ap/p and ¢ contribute to the lengthening
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Cooling Range | /
B The cooling force depends on As nonlinearly o \/\
op _ AE . sin(k5s)=%3in(ax sin(l//x)—l—aID sin(wp)) /

P E %283 3142 3142 A28

where a, & a, are the lengthening amplitudes due to L and L motions
measured in units of laser phase (a= k65s)

B The form-factor for damping rate of longitudinal cooling for
particle with amplitudes a, & a,

F.(a,,a,)=— sm a, siny, +a siny | )sin
.(a,.a,) pgﬁ v v, Jsiny, =

F(808,) = J(3)3,(3,)

p

B Similar for transverse motion

R FCEREANCRMCS

B Damping requires both lengthening -03 .
amplitudes be smaller w~2.405 2

=

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012 11



Cooling of the Gaussian beam
B Averaging the cooling form-factors for Gaussian distribution
can be presented in the following form
1 % a’ a’ |adaada
F (Ko, Koy,) = T J‘aXZFl(aX,ap)expL_ s P j chatar

2 A2 2 |14 2
Ase 0 Ase 2k GAsp k O-As.e GAsp

¢ Integration yields

k2 2 2 2
FX (kGASE’ kGASP) - |:s (kGAs,s' kGAsp) = exp[_ GZAsp jexp(_kazAsgj

B Good beam lifetime requires the cooling force to be positive
for large amplitude particles

B Assuming that cooling becomes zero at 4c for both planes
= Kousp= Kous:= tio/4 ~ 0.6
=  Nonlinearity of cooling force results in the cooling force
reduction by factor F,(u, /4, u,14)=F,(u, !4, 1, 1 4) ~0.697
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Longitudinal Kick by E.-M. Wave

B Electric field of flat e.-m. wave focused at z=0 to the rms size o,

> 8P 1
‘ X‘ = 7 X
C |o(2)

R 2|
p{ 02<z>}’ ) 28““[

2
ﬂ;;+%], by =

A

:2k:47r’

2 *
O-J_ - 2‘g‘wﬂw

B The beam is deflected in the x-plane by wiggler magnetic field
¢ That results in the beam energy change AE =e[(E- v)dt

B Helical dipole suggest V2 times better kicker efficiency

¢ Circular polarized light

¢ Optical amplifier requires flat wave

B For helical dipole
¢ Resonance condition
K
k :2—72(1+ KUZ), K,
¢ Optimal focusing for helical
wiggler
o, #/0.946L4, , L=n,,4,

L is the total wiggler length

eB

mc?

wgl
wgl
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Longitudinal Kick by E.-M. Wave (continue)

B For helical kicker and large number Kick VI /W wiggi
of per'iods (ﬂwg/ >> 1) the helical 20Wigéles — I‘ P
Kicker strength is (M. Zolotorev) w0 e
= o @t
.-@
AE K 2 10 wiggles
"~ 18.837n,,,PZ, —— 2.5 wiggles
e 1+ Ku 2 1.5 wiggles i
Awy €B Ky
where K. = 2;: mcZ ¢ Lo=377 Q Uj8.83720~P- .
1+ K,
¢ The waist size is growing with ) 1 1
. 40 60 80
kicker leng’rh = B [kG]

o, ~/0.946L4,

B ~5.944L
¢ The kicker is less effective than formula prediction for small A,
pwgr™ o1 & negative contribution of £;

14
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Damping rates
B Assembling the above equations one obtains

| mfAELG M
Al A (1+1,Ky?) °| My, — Mg,

Here G is the gain of power amplifier (in amplitude)
AE,, =K, %rezBZ}/ZL

is the total energy radiated in wiggler

/1W9| eBo .
K =- ez is the undulator parameter
kK?(0,\,° + 04, 2
Fcexp[ ( Apz te )J:exp[—yzo

B 1, helical undulator
“|1/2, flat undulator

B Damping rate for flat undulator is
about half of helical undulator with
the same number of wiggles
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Beam optics

Sequence of optics adjustments

B Set required delay in the chicane, As
B Adjust focusing in the chicane center to get desired Ms¢
¢ That sets the sum of damping rates
¢ Inabsence of focusing Ms¢~2As
¢ Defocusing reduces Ms;
B Adjust dispersion and dispersion prime to make desired value of

partial slip-factor, Ms
¢ That determines the ratio of damping rates
and the cooling range in momentum

B Adjust beta-function through the chicane to minimize sample
lengthening from pickup to kicker
¢ For optics symmetrical relative to the chicane center the optimum is

achieved when B* is minimum in the center
¢ Larger value at the ends yields larger range of horizontal damping
Adjust focusing outside of chicane to minimize beam sizes in wigglers

B If necessary iterate to achieve desired parameters
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Optics choice for the cooling chicane
B 3 choices were considered

¢ Choice 1: A, = 2 um, equal decrements
e small delay of ~2 mm, therefore an optical amplifier hardly
can be used
e OSC without amplifier yields an order of magnitude faster
damping than SR
¢ Choice 2: Ay, = 6 um, Ay~ 32,
e 10 mm delay
e Reasonable accuracy of beam optics is required
e Reduced energy (150->86 MeV) if the same undulator is used.
e Both active and passive coolings are possible
¢ Choice 3: MIT-Bates like - Ay = 2 um, Ax = Hig
e 4 mm delay - tough fo squeeze an optical amplifier
e High sensitivity to optics errors
B All 3 choices can be realized in the same layout and hardware
¢ Only strengths of dipoles and quadrupoles and the location of
central quadrupole need to be changed
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Optics for 2 um wavelength and As=4 mm

Sun Feb 26 18:27:59 2012

OptiM - MAIN: - C:\VAL\Optics\Project XAIOTA\OptStochCooling\2um\ShortCh

N “
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< I
o |a
oi | / | \‘_‘_ _._-:><.I
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DISP_X DISP_Y
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Sun Feb 26 18:29:17 2012 OptiM - MAIN: - C:\VAL\Optics\Project X\IOTA\OptStochCooling\2um\ShortC¥t

] ]
o 1©
@] @]
£ |E
o -8
XI* = >-I
0] 0]
N -IN
0)) \ / 0))
i e N B
(@) \ \ \ \ \ (@)
(0] AX_bet Ay bet Ax_disp Ay disp 4.86504

Twiss parameters (top) and rms beam sizes through OSC section
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Optics for 2 um wavelength and As=4 mm (continue)

| | | | | | | | |
aF 1 T T | -
0.5 7
0 | | |
2 2.5 3 \
0 —
Partial slip factor
—2F -
—4f —
| | | | | | | | |
0 0.487  0.973 1.46 1.946 2433 2919 3406 3.892 4379  4.865
400 T T T

300

200

100

| | | A A0
L. TUJ

0
0 0.487  0.973 1.46 1946 2433 2919 3406 3.892 4379 4.865
s [m]

Mss and |\7| 56 (Top) and sample lengthening due to betatron motion, a,, (bottom) through OSC

section 19
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Optics for 2 um wavelength and As=4 mm (continue)

10 101 I m
Ay Ay Dypo
-~ 8 — 8 : _
hg Ag
6 o m
77777777777777777777777777777 decr]
4 4~ 7
2 . 2 .
0 ] ] ] 0 ] ]
- 0.2 —0.15 - 0.1
dD,/ds
2 I il
A, Dypo
1.5 | 7
T Apor
0.5F | .
0 ] | - ] 0 ] ‘ ]
28 30 32 34 - 0.2 - 0.15 - 0.1
D, [cm] dD,/ds

Dependence of ratio of decrements and longitudinal cooling acceptance (expressed in units of 4o,)
on dispersion and its derivative at the chicane entrance
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Optics for 2 um wavelength and As=4 mm (continue)

2 I T I I

A

X

DM 14.5 15I 155 16 27 282930 31 3
B [m] ex
Dependence of transverse cooling acceptance (expressed in units of 4o,) on beta- and alpha-
functions at the chicane entrance

10
Mg : _
:’"s 6 E |
; 7 I "Rt
| 2 B
0 l [ . 0 l [ .
o017y 0018 o.0ma o017 0018 009
O [cmrT] O [crmr ]

Dependence of transverse and longitudinal cooling acceptances (expressed in units of 4o,,) on
focusing strength of gquadrupole located in the chicane center
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Optics structure of OS cooling insertion
G[kG/cm] type

2B 00N A WwN = Z

— =
w N

14
15
16
17
18
19
20
21
22
23

Name
oq
bWGLm
oL
qChF1
oq
qChD
oq
bChp
od
bChm
oq
qChF
oq
bChm
od
bChp
oq
qChD
oq
qChF1
oL

bW6Lhp

oq

S[cm]
10
99.376
131.252
151.252
161.252
181.252
191.252
202.252
212.252
223.252
233.252
253.252
263.252
274.252
284.252
295.252
305.252
325.252
335.252
355.252
385.252
386.502
486.504

Llcm]
10
89.376
30

20

10

20

10

11 6.9
10

11 -6.9
10

20

10

11 -6.9
10

11 6.9
10

20

10

20

30

89.376

10

B[kG]
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Cooling parameters

Choice 2 Choice 3 | MIT-Bates
Beam energy, MeV 86 150 300
SR transverse damping rate, s, 1, 0.29 3.7 0.2
Machine circumference, m 374 190.2
Number of particles per bunch 3-10° 108
Number on bunches 1 12
Rms horizontal emittance (SR equilibrium), cm | 1.21*10”7 3.4*10” 98*107
Rms momentum spread (SR equilibrium) 0.857*10* | 1.48*10* 1.64*10*
Rms bunch length (SR equilibrium), cm 11 11 -
Optical amplifier wave length, um 6 2 2
Delay in the chicane, mm 10 4 6
Electron beam offset in the chicane, mm 50 32 98
Undulator length [m] / Number of periods 1/10 2/ 20
Undulator type flat flat
Undulator parameter, K, 2.2 3.5
Ratio of decrements, A /A 3 5 ~7
Cooling range in o 6 4 2.87?
Cooling rates with gain equal to 1, s, As/), 10/32 12/62 -
Optical amplifier bandwidth ~10% ~10% 10%
Optical gain (amplitude) 15 10 90
Optical amplifier power, mW 30 30 -
Cooling rates with optical amplifier, s, Ls/)x 160/500 110/550 -

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012
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6 ym versus 2 um

B 6 um looks as much more attractive choice
¢ A lot of flexibilities in every important parameter
e Optical amplifier
e Optics sensitivity to errors
e cooling range
¢ Optical amplifier needs to be investigated
B 2 um looks attractive
¢ Looks very attractive without optical amplifier
e 2 mm pass length difference reduces optics problems
e Order of magnitude gain in damping rates(relative to SR)
0 Helical undulators increase gain by ~2 times
¢ However a possibility of its use with optical amplifier needs to be

investigated
e TIs delay of 4 mm sufficient?
e Anincrease of delay above 4 mm may be possible
but it increases the ratio of decrements and sensitivity of optics to
errors,
and increases difficulties of matching OSC section to a ring lattice
24
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Discussion
B Optical stochastic cooling looks realistic with IOTA
parameters
B Wave length of ~6 um is preferable
¢ It has considerable freedom in cooling parameters
B 2 um choice requires an amplifier with <4 mm delay
¢ This possibility requires additional investigation

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012
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Backup Viewgraphs
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Damping Rates of O

ptical Stochastic Cooling

Transfer Matrix Parameterization

B Vertical degree of freedom is
uncoupled and we will omit it in

further consideration
M16_
M26
M56

M,
M.,
Mg,

0

My,

M5,

Ms,
0

0

0
1
0

1

Ap/p

N M16 & M2¢ can be expressed

through dispersion
M16_

M,
M,
0

My,
M.,
0

M 2
1

That yields

_Dl_

D,
1

D,
D;
1

M26:D£

M16 — Dz _M11D1_M12D1’
_M21D1_M22D1,

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

M, = Po (cos g + e, sin p)

1

M,, =\/g(cos;z o, sin 1)

Pickup 7

Bro
D, D)




Transfer Matrix Parameterization (continue

[ SYH’\plZCTICITy ( M'UM = U ) binds up Ms1,M5» and Mi¢,M>¢

B That yields
M51 = M21M16 M11M26
M52 = Mzlee - M12M26

B Finally one can write

1

0
0
0

o+ O O

M, =D,—-D, /'gz(c05y+alsmy D,/ B85, sin u
1

M., =-D, + D, ,'gl(COS,u o, Sin 41)— Dy BB, Sin i

2

M., =D 10[25|ny+ Lcosu |+ D - D) ﬁ(COS,u—Ol siny)
i [ JBS; \/ﬁlﬂz LA 2
1+ a,a, . o J5; :
M., = —D,| =——=22sin u +—2—Lcos u |+ D} — D} |22 (cos u + o, sin u1)
i ( VB, \/m ) VA 1

B In the first order the orbit lengthening due to betatron motion

is equal to zero if D1=D 1= D,=D 2= 0

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012
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Transfer Matrix Parameterization (continue)

B Partial momentum compaction and slip factor (from point 1 fo point 2)
are related o Ms
Ap 1 Ap

as, , =27Rm, 2P =MD, 2P M D/ 2P M, AP 2
p p p p s p

¢ Further we assume that V=°C.v=c, i.e. 1/y*=0 and n=a.,.
I\/|51D1—I_ I\/ISZDZL,—I_ M56
2R

1 :
M., =2zRn, +D,D, { T, sin p+< cos;z]+D D, /% (cos u + a, sin p1)
1

NN '\/ﬁlﬂz
- Dl’DZ\/E(cos;z—oz2 sin 1)+ D.D}+/ 8,3, sin u

B Thus, the entire transfer matrix from a point 1 to a point 2 can be
expressed through the B-functions, dispersions and their derivatives
at these points and the partial slip factor

B That resultsin = or
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Damping Rates of Optical Stochastic Cooling

Longitudinal kick

5p=m|_:x[|v| X +M,_0, +M, Apj
p o p

Or in the matrix form: §X=M_ X,

0 0O 0 O
0 0O 0 O
M. =«
0 0O 0 O
_M 151 M 152 O M 156 _|

Total ring matrix related to kicker
(Ring&RFé&damper)

M X, =MM,X, +0X, =MM.,X, +M_X,

= Mtot M + AM wher'e

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

T mﬁl lvll S chker
/ Bzaz
/ D,D,

PiCkUp / ‘\\ X Uext /,

04
D.D; N\ T,

S

M - pickup-to-kicker matrix
M; - kicker-to-pickup matrix
M = MiM; - ring matrix
M= it
Mv, =4 v,

= (Mle + McMz)Xz

M=MM,, AM=M_M,
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Damping Rates of Optical Stochastic Cooling (continue
Per"rur'ba’rlon Theor'y yields that the eigen-value correction is [HB2008]:

S, = 2vk "UAMYv, = 2vk ‘UM M, (MM, )v, 2/1 NV UMM, v,

R, = | oA __ivk+U Mch_lvk

Corresponding tune shift is: 27 A A

Symplecticity relates the transfer matrix and its inverse:

M, =-UM,'U
1

N RN, ZEVK+U M_UM, Uy,

Performing matrix multiplication and taking into account that
symplecticity binds up Ms1,Ms,2 and Mig,M24 one finally obtains:

0 0 0 0 |
50 x . 0 0 0O O
=—V \Y
‘ 4r ‘ Mlze BT 0 Mlse ‘
0 0 0 0
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Eigen-vectors and Damping Decrements (Mode 1

B There are two eigen-vectors
¢ One related to the betatron motion v,
¢ And one related to the synchrotron motion v,

B They are normalized as: v,” Uv, =-2i

B If the synchrotron tune and dispersion in RF cavities are small
the effect of RF can be neglected in the computation of v,

¢ Inthis case 4 =e™* and
the eigen-vector related to the kicker position is

V5 My My, 0 My
— (i M M 0 M
v, = (I +0{2)/ B, My, =Av,, M= 21 22 26
Vi, Ms; Mg 1 Mg
0 0 O 0 1

The first 2 components are the same as for uncoupled case.

The third component has to be found from the third equation
_ iDz(l_ ia2)+ D, /5,

- V= JB,

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012 3 2




¢ Corresponding damping rate is

A =27 1m&Y,
- Js [0 0o 0o o s
K —(i+a,)B, || O 0 0 0 | -(i+a)/B,
V13 L 1ig 0 M 156 V13
i 0 1L 0 0 0O O 1 0 |

= _g(DZMlm N D£M11,6 )

That yields
x| (1+ ey, )sin p, + (e, — o, )cOS p , B
=——|D,D L2 -2z - L—D/D, [=(cos 1, — a, COS 1
ﬂ'l 2_ 2 m 2 IBZ( 2 )

+D,D, %(Cosﬂl +a;sin /Ul)'l' D,D;+/ 8.5, sin ﬂl}

1

Expressing it through the partial slip factor one gets

A= _g(M 56 _27ZR771)
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Eigen-vectors and Damping Decrements (Mode 2
B To find the second eigen-vector we will ignore the second
order effects of betatron motion on the longitudinal dynamics

¢ The linerazed RF kick is
&P DS

P
¢ Simple calculations yield for the eigen value 4 =e™s

where the synchrotron tune # =+2Rn®,
¢ Corresponding eigen-vector related to the kicker position is
_iDz /\/ﬁs
B
1 \/F
- —ilB,

where the longitudinal beta-function B; =2Rn/

34
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¢ Corresponding damping rate is

A, =—=271m&,
__iDzl\/FS—
K —iD; /B,
2 JB.
il
K

0 0
0 0

M 126 Lig
0 0

= __(Mlse N D2M126 + DéMllG)

2

o O O O

__iDzl\/:Bis_
~iD; /B,
\/7

B,
- —ilB

Expressing the matrix elements through Twiss parameters

onhe obtains

Ay

K

——My, -4 =-7xRny,

2

The last expression can be directly obtained from the

definition of the partial slip factor

B The above equation yields the sum of the decrements is

A+ A, :—gM

156
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Damping Rates for Smooth Lattice Approximation

B For zero derivatives of beta-function and dispersion at pickup
and kicker one obtains

A = _x Db, Sin 1,
2.\ B,
D,D,

K
A, = —Z{le msm ,LL1:|

B Smooth lattice approximation additionally yields

R Lo L

R K « R Lo
=—, D=—, =v— np=—7"""—, M_=——"+—sinjv—|,
p 1% 2 # R L 27veR 156 viooy? ( Rj

where L is the pickup-to-kicker path length, and v is the betatron tune
__kR Lo
A = Sln(v S j

V
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Comparison to Zholents-Zolotorev result
PRST-AB, v.7,p.12801 (2004)

Egs. (A9) and (A11) in the paper Appendix can be rewritten in the
following simplified form

K . o
ﬂ’l :E(D2M151 T DZMlsi)

K _ N .
@z—zbﬂh;u%mé+mé)

The inverse of the matrix is

M, =-UM, U=

—, O O
<

0 0 0 1

Substituting expressions for matrix elements into above Egs. for
decrements one arrives to the same results
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Sample Lengthening on Pickup-to-Kicker Travel
B Zero length sample lengthens on its way from pickup-to-kicker

_ _ A
oy’ =My x+ M6, +M,_ Bf f(x,6, P)xdgdp, p= pp
where for Gaussian distribution
exp _7/p(x_ Dp —5)2 +2ap(9x B D;J 5XX_ Dp ﬁ)+,3p(X— Dp ﬁ)_ 52
f(X@ ~)_ 2¢ 20p2 _1+ap2
Do B)= \/_27r0'5 T B,

¢ Performing integration one obtains
o, =g(ﬁp|\/|15 ~2a,M, M, +7,M, *)}+c (M, D, +M, D! +M, f

B Expressing matrix elements through Twiss parameters yields
o L2 = &F, +0p2(27zRa1_>2)2
2D, D,

'\/ﬂpﬂk
2D,D'a, +2D,D] P (sin 1, - ar, cos )-2D, D’ ﬁ(sin + a, C0S u,)— 2D, D’ [B. B, cos
p=p%p 3 Hy p Hy k "\ B, Hy k Hy kYpal PpPx Hy
p

F,=D,’7, +D’7\ - @+ a,a,)cos uy + (@, —a, )sin )+ DI? B, + DB, +2D, Dy, +
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B For zero derivatives it yields
. [D? D, 2DD

P

2
o, =€ + — =Cosy |+o, | M~
ﬂk ﬂp '\,[Bkﬂp J p[ °
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Longitudinal Kick by E.-M. Wave
B Electric field of e.-m. wave focused at z=0 to the rms size o,

2
E, (%, Y,2,1) = Re| B, _exp| - Xy 3 dipole wiggler
o (Z) 2 (o2 (Z) H 20 1: | 3: T T
E 0 ) | 30 300

X,Y,2,t) = 2. | i
e B T
: OF e ™ B i
E,(x,Yy,2,t) =Re iEoe'(“’t"‘Z) 9 X exp| — & X" +y° _‘\Q
ka*(2) 20 *(2) S U1] SR 4 \\ i

E l : l ™ |
E, = i , az(z)zo-z_ii, k= 2% CIE w150

CGLZ . k Ay 2 [m]

B The beam is deflected in the x-plane by wiggler magnetic field
¢ That results in the beam energy change AE = e[ (E-v)dt
j dz’}+iyxﬂdz

dx o,° Ial X 1x°+
= AE:eEOIRe{[dz o’(2) ko (z)jex'{ 2 (z) [27/ (
X\ 4o
and 5! (d—z) 92" pepresents the path length difference between

where v is the accelerating phase (AE = O for = 0)

light and beam introduced by wiggler (relative to wiggler center)
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Estimate of Energy Kick in Helical Wigaler |
B Assuming that p, << o, the kick amplitude is

L/2 2 0.3r
AE_ | 4P oz 4\/36’ Ko asinh = >
e Co'l |z/k‘ 2Ko | ]

B The function xsmh(l/x ) achieves its maximum at x =c, ~0.54884
AE

4c, . (1) [P c,” L
—1 =-2sinh| = |,|—6,+KL ; - =2 —
e |, > (Coz} o is achieved at 0. >
B Taking into account that 4z/c =2, and kL=2zn,, we obtain

= Maximum kick of

% =2c smh(c1 je m
opt 0
B The condition of resonance is: k(l/(272)+902/2): k. , Where the
[ . . . . 0. = 1 R pC
particle angle (relative o wave direction) is % "R e,
B That yields
8PZn,,K,” [8.837PZn,, K,
AE = C,Sinh 12 0 W9'2 U o ng DK, = eB,
€ lopt Co 1+ Ku 1+ Ku kang
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