

Optical Stochastic Cooling in IOTA

Valeri Lebedev Fermilab

> IOTA review Fermilab Feb. 23, 2012

Objective

Experimental test of Optical Stochastic cooling in IOTA

<u>Outline</u>

- Optical stochastic cooling principles
- Beam optics requirements
 - Damping rates
 - Cooling range
- Requirements to optical amplifier
- Future possible applications
- Conclusions

Optical Stochastic Cooling

- Suggested by Zolotorev, Zholents and Mikhailichenko (1994)
- Never tested experimentally
- OSC obeys the same principles as the microwave stochastic cooling, but exploits the superior bandwidth of optical amplifiers ~ 10^{14} Hz
- Undulator can be used as pickup & kicker
- Pick-up and Kicker should be installed at locations with nonzero dispersion to have both \product and L cooling.

MIT-Bates Proposal for Tevatron (2007)

OSC Demo With Electrons

- OSC considered for p, ions at several facilities, still unproven
 - Counteracts heating due to IBS, beam-beam (cooling of tails)
 - OSC rates, luminosity gain strongly depend on achievable parameters
- Technical requirements for cooling of heavy particles are severe (\$\$\$)
 - Optics of particles in bypass controlled to fraction of λ
 - Very strong wiggler fields
 - Amplifier saturates far below optimal gain
 - Diagnostics predictive of OSC required (cooling time of order hours)
- Demonstration of OSC with e- would point way to cooling at very high E, N
 - OSC of electrons much faster (~1 sec)
 - Modest technical requirements (wiggler, amplifier, chicane)
 - Develop techniques to achieve OSC, study physics for scaling to high E, N
 - Proposed at several facilities but not carried out

W. Franklin

PAC 2007

Some deficiencies of the proposal will be discussed later

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

5

Main parameters of the Bates proposal (W. Franklin, PAC-2007)

Beam energy	300 MeV
SR transverse damping time	4.83 s
Machine circumference	190.2 m
Number of particles per bunch	10 ⁸
Number on bunches	12
Rms horizontal emittance (SR equilibrium)	98*10⁻ ⁷ cm
Rms momentum spread (SR equilibrium)	1.64*10 ⁻⁴
Optical amplifier wave length	2 μ m
Optical amplifier bandwidth	10%
Optical gain (amplitude)	90
Delay in the chicane	6 mm
Undulator length / Number of periods	2 m / 20

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

Optical Stochastic Cooling Fundamentals

- The sequence of our consideration
 - ♦ 6×6 matrix parameterization
 - Matrix symplecticity is used
 - Damping rates in linear regime
 - Perturbation theory for symplectic motion
 - Damping rates for large amplitudes
 - Cooling range for finite amplitudes
 - Correction factors for the finite amplitude
 - Undulators
 - Gain and power of optical amplifier
 - Final expression for damping rates

Transfer Matrix Parameterization

- Vertical plane is uncoupled and we omit it in further equations
- Matrix from point 1 to point 2

$$\mathbf{M} = \begin{bmatrix} M_{11} & M_{12} & 0 & M_{16} \\ M_{21} & M_{22} & 0 & M_{26} \\ M_{51} & M_{52} & 1 & M_{56} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ \theta_x \\ s \\ \Delta p / p \end{bmatrix}$$

 $M_{16} \& M_{26} \text{ can be expressed}$ through dispersion $\begin{bmatrix} M_{11} & M_{12} & M_{16} \end{bmatrix} \begin{bmatrix} D_1 \end{bmatrix} \begin{bmatrix} D_2 \end{bmatrix}$

$$\begin{bmatrix} 11 & 12 & 16 \\ M_{21} & M_{22} & M_{26} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ D'_1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ D'_2 \\ 1 \end{bmatrix}$$

 Symplecticity (M^T U M = U) binds up M₅₁,M₅₂ and M₁₆,M₂₆ =>
 M₅₆ is related to the partial slip factor, η_{1→2}

$$M_{11} = \sqrt{\frac{\beta_2}{\beta_1}} (\cos \mu + \alpha_1 \sin \mu)$$
$$M_{22} = \sqrt{\frac{\beta_1}{\beta_2}} (\cos \mu - \alpha_2 \sin \mu)$$
$$M_{12} = \sqrt{\beta_1 \beta_2} \sin \mu$$
$$M_{21} = \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_1 \beta_2}} \cos \mu - \frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu$$

$$M_{16} = D_2 - M_{11}D_1 - M_{12}D_1'$$
$$M_{26} = D_2' - M_{21}D_1 - M_{22}D_1'$$

$$M_{51} = M_{21}M_{16} - M_{11}M_{26}$$
$$M_{52} = M_{22}M_{16} - M_{12}M_{26}$$

=> All matrix elements can be expressed through $\beta_k, \alpha_k, D_k, D_k', M_{56}$, k = 1, 2

=>

Partial slip factor

Partial momentum compaction and slip factor (from point 1 to point 2) are related to M₅₆

$$\Delta s_{1\to 2} \equiv \hat{M}_{56} \frac{\Delta p}{p} = M_{51} D_1 \frac{\Delta p}{p} + M_{52} D_1' \frac{\Delta p}{p} + M_{56} \frac{\Delta p}{p} + \frac{1}{\gamma^2} \frac{\Delta p}{p}$$

• Further we assume that v = c, i.e. $1/\gamma^2 = 0$ and $\eta_1 = -\alpha_{1 \rightarrow 2}$.

That results in
$$\hat{M}_{56} = M_{51}D_1 + M_{52}D_1' + M_{56}$$

• Note that M_{56} sign is positive if a particle with positive Δp moves faster than the reference particle

Damping Rates of Optical Stochastic Cooling

Longitudinal kick

$$\frac{\delta p}{p} = \kappa \Delta s = \kappa \left(M_{1_{51}} x_1 + M_{1_{52}} \theta_{x_1} + M_{1_{56}} \frac{\Delta p}{p} \right)$$

Tune shifts

Rewriting above Eq. in matrix form, adding the rest of the ring, and using perturbation theory for symplectic motion one obtains the tune shifts

 $\delta Q_k = \frac{1}{4\pi} \mathbf{v}_k^{+} \mathbf{U} \mathbf{M}_c \mathbf{U} \mathbf{M}_1^{T} \mathbf{U} \mathbf{v}_k$

where U is unit symplectic matrix
Expressing matrix elements and eigenvectors through Twiss parameters one obtains the cooling rates:

That yields that the sum of the decrements is

 M_1 - pickup-to-kicker matrix M_2 - kicker-to-pickup matrix $M = M_1M_2$ - ring matrix

$$\mathbf{M}\mathbf{v}_{k} = \lambda_{k}\mathbf{v}_{k}$$

$$\lambda_x = -\frac{\kappa}{2} \left(M_{1_{56}} - \hat{M}_{56} \right)$$
$$\lambda_s = -\frac{\kappa}{2} \hat{M}_{1_{56}}$$

$$\lambda_x + \lambda_s = -\frac{\kappa}{2} M_{1_{56}}$$

Sample Lengthening on Pickup-to-Kicker Travel

Zero length sample lengthens on its way from pickup-to-kicker

$$\sigma_{\Delta s}^{2} = \int \left(M_{1_{51}} x + M_{1_{52}} \theta_{x} + M_{1_{56}} \widetilde{p} \right)^{2} f(x, \theta_{x}, \widetilde{p}) dx d\theta_{x} d\widetilde{p} , \quad \widetilde{p} = \frac{\Delta p}{p}$$

• Performing integration one obtains for Gaussian distribution

$$\sigma_{\Delta s}^{2} = \sigma_{\Delta s \varepsilon}^{2} + \sigma_{\Delta s p}^{2}$$

$$\sigma_{\Delta s \varepsilon}^{2} = \varepsilon \left(\beta_{p} M_{1_{51}}^{2} - 2\alpha_{p} M_{1_{51}} M_{1_{52}} + \gamma_{p} M_{1_{52}}^{2}\right)$$

$$\sigma_{\Delta s p}^{2} = \sigma_{p}^{2} \left(M_{1_{51}} D_{p} + M_{1_{52}} D'_{p} + M_{1_{56}}\right)^{2}$$

• Both $\Delta p/p$ and ϵ contribute to the lengthening

<u>Cooling Range</u>

The cooling force depends on Δs nonlinearly

$$\frac{\partial p}{p} = \frac{\Delta E_{\max}}{E} \sin(k \, \delta s) = \frac{\Delta E_{\max}}{E} \sin(a_x \sin(\psi_x) + a_p \sin(\psi_p))$$

where $a_x \& a_p$ are the lengthening amplitudes due to \perp and L motions measured in units of laser phase ($a = k \delta s$)

The form-factor for damping rate of longitudinal cooling for particle with amplitudes $a_x \& a_p$

$$F_s(a_x, a_p) = \frac{2}{a_p} \oint \sin\left(a_x \sin\psi_x + a_p \sin\psi_p\right) \sin\psi_p \frac{d\psi_x}{2\pi} \frac{d\psi_p}{2\pi}$$

 $F_s(a_x, a_p) = \frac{2}{a_p} J_0(a_x) J_1(a_p)$

Similar for transverse motion

$$F_x(a_x, a_p) = \frac{2}{a_x} J_0(a_p) J_1(a_x)$$

■ Damping requires both lengthening amplitudes be smaller µ₀≈2.405

Cooling of the Gaussian beam

Averaging the cooling form-factors for Gaussian distribution can be presented in the following form

$$F_{x}(k\sigma_{\Delta s\varepsilon}, k\sigma_{\Delta sp}) = \frac{1}{2k^{2}\sigma_{\Delta s\varepsilon}^{2}} \int_{0}^{\infty} a_{x}^{2} F_{1}(a_{x}, a_{p}) \exp\left(-\frac{a_{x}^{2}}{2k^{2}\sigma_{\Delta s\varepsilon}^{2}} - \frac{a_{p}^{2}}{2k^{2}\sigma_{\Delta sp}^{2}}\right) \frac{a_{x}da_{x}a_{p}da_{p}}{k^{4}\sigma_{\Delta s\varepsilon}^{2}\sigma_{\Delta sp}^{2}}$$

Integration yields

$$F_{x}(k\sigma_{\Delta s\varepsilon}, k\sigma_{\Delta sp}) = F_{s}(k\sigma_{\Delta s\varepsilon}, k\sigma_{\Delta sp}) = \exp\left(-\frac{k^{2}\sigma_{\Delta sp}^{2}}{2}\right) \exp\left(-\frac{k^{2}\sigma_{\Delta s\varepsilon}^{2}}{2}\right)$$

- Good beam lifetime requires the cooling force to be positive for large amplitude particles
- Assuming that cooling becomes zero at 4σ for both planes
- $\Rightarrow \quad k \sigma_{\Delta sp} = k \sigma_{\Delta s\varepsilon} = \mu_0 / 4 \approx 0.6$
- ⇒ Nonlinearity of cooling force results in the cooling force reduction by factor $F_x(\mu_0 / 4, \mu_0 / 4) = F_s(\mu_0 / 4, \mu_0 / 4) \approx 0.697$

Longitudinal Kick by E.-M. Wave

Electric field of flat e.-m. wave focused at z=0 to the rms size σ_{\perp}

$$E_{x}|^{2} = \frac{8P}{c} \frac{1}{|\sigma(z)|^{2}} \exp\left(-\frac{x^{2}+y^{2}}{|\sigma^{2}(z)|}\right), \quad |\sigma^{2}(z)| = 2\varepsilon_{w} \left(\beta_{w}^{*} + \frac{z^{2}}{\beta_{w}^{*}}\right), \quad \varepsilon_{w} = \frac{1}{2k} \equiv \frac{\lambda_{w}}{4\pi}, \quad \sigma_{\perp}^{2} = 2\varepsilon_{w}\beta_{w}^{*}$$

The beam is deflected in the x-plane by wiggler magnetic field

- That results in the beam energy change $\Delta E = e \int (\mathbf{E} \cdot \mathbf{v}) dt$
- Helical dipole suggest $\sqrt{2}$ times better kicker efficiency
 - Circular polarized light
 - Optical amplifier requires flat wave
- For helical dipole
 - Resonance condition

$$k_{wgl} = \frac{k}{2\gamma^2} (1 + K_U^2), \quad K_U = \frac{eB}{k_{wgl}mc^2}$$

 Optimal focusing for helical wiggler

 $\sigma_{\perp} \approx \sqrt{0.946L\lambda_w}$, $L = n_{wgl}\lambda_{wgl}$

L is the total wiggler length

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

5 dipole wiggler

Longitudinal Kick by E.-M. Wave (continue)

For helical kicker and large number of periods (n_{wgl} >> 1) the helical kicker strength is (M. Zolotorev)

$$\frac{\Delta E_{\max}}{e} \approx \sqrt{8.837 n_{wgl} P Z_0 \frac{K_u^2}{1 + K_u^2}}$$

where
$$K_u = \frac{\lambda_{wgl}}{2\pi} \frac{eB}{mc^2}$$
, Z₀=377 Ω

• The waist size is growing with kicker length - $\sigma_{\perp} \approx \sqrt{0.946L\lambda_w}$

 $\beta_w^* \approx 5.944L$

• The kicker is less effective than formula prediction for small $n_{wg/}$ $\rho_{wg/} \sim \sigma_{\perp}$ & negative contribution of E_z

Damping rates

Assembling the above equations one obtains

$$\begin{bmatrix} \lambda_s \\ \lambda_x \end{bmatrix} = \frac{\pi f_0 \Delta E_{wgl} G}{\lambda_w E_0 \left(1 + \kappa_u K_U^2\right)} F_c \begin{bmatrix} \hat{M}_{56} \\ M_{156} - \hat{M}_{56} \end{bmatrix}$$

Here G is the gain of power amplifier (in amplitude)

 $\Delta E_{wgl} = \kappa_u \frac{2}{3} r_e^2 B^2 \gamma^2 L$ is the total energy radiated in wiggler $K_u = \frac{\lambda_{wgl}}{2\pi} \frac{eB_0}{mc^2}$ is the undulator parameter $F_{c} = \exp\left(-\frac{k^{2}\left(\sigma_{\Delta sp}^{2} + \sigma_{\Delta s\varepsilon}^{2}\right)}{2}\right) = \exp\left(-\frac{\mu_{0}^{2}}{2}\left(\frac{1}{n_{\sigma c}^{2}} + \frac{1}{n_{\sigma c}^{2}}\right)\right)$ $\kappa_{u} = \begin{cases} 1, & \text{helical undulator} \\ 1/2, & \text{flat undulator} \end{cases}$ $\exp\left[-\frac{\mu_0^2}{n}\right]_{0.8}$ Damping rate for flat undulator is $n_{\sigma} = n_{\sigma \varepsilon} = n_{\sigma p}$ about half of helical undulator with 0.40.2

the same number of wiggles

3

4

5

 n_{σ}

<u>Beam optics</u>

Sequence of optics adjustments

- Set required delay in the chicane, Δs
- Adjust focusing in the chicane center to get desired M_{56}
 - That sets the sum of damping rates
 - In absence of focusing $M_{56} \approx 2\Delta s$
 - ♦ Defocusing reduces M₅₆
- Adjust dispersion and dispersion prime to make desired value of partial slip-factor, \hat{M}_{56}
 - That determines the ratio of damping rates and the cooling range in momentum
- Adjust beta-function through the chicane to minimize sample lengthening from pickup to kicker
 - For optics symmetrical relative to the chicane center the optimum is achieved when β^* is minimum in the center
 - Larger value at the ends yields larger range of horizontal damping
- Adjust focusing outside of chicane to minimize beam sizes in wigglers
 - If necessary iterate to achieve desired parameters

Optics choice for the cooling chicane

- 3 choices were considered
 - Choice 1: $\lambda_w = 2 \mu m$, equal decrements
 - small delay of ~2 mm, therefore an optical amplifier hardly can be used
 - OSC without amplifier yields an order of magnitude faster damping than SR
 - Choice 2: $\lambda_w = 6 \mu m$, $\lambda_x \approx 3\lambda_s$,
 - 10 mm delay
 - Reasonable accuracy of beam optics is required
 - Reduced energy (150->86 MeV) if the same undulator is used.
 - Both active and passive coolings are possible
 - Choice 3: MIT-Bates like λ_w = 2 μ m, $\lambda_x \approx 5\lambda_s$
 - 4 mm delay tough to squeeze an optical amplifier
 - High sensitivity to optics errors
 - All 3 choices can be realized in the same layout and hardware
 - Only strengths of dipoles and quadrupoles and the location of central quadrupole need to be changed

Optics for 2 μ m wavelength and Δ s=4 mm

Sun Feb 26 18:27:59 2012 OptiM - MAIN: - C:\VAL\Optics\Project X\IOTA\OptStochCooling\2um\ShortCh

Twiss parameters (top) and rms beam sizes through OSC section

Optics for 2 μ m wavelength and Δ s=4 mm (continue)

 M_{56} and \hat{M}_{56} (top) and sample lengthening due to betatron motion, a_x , (bottom) through OSC section Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

Optics for 2 μ m wavelength and Δ s=4 mm (continue)

Dependence of ratio of decrements and longitudinal cooling acceptance (expressed in units of $4\sigma_p$) on dispersion and its derivative at the chicane entrance

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

Optics for 2 μ m wavelength and Δ s=4 mm (continue)

Dependence of transverse cooling acceptance (expressed in units of $4\sigma_x$) on beta- and alphafunctions at the chicane entrance

Dependence of transverse and longitudinal cooling acceptances (expressed in units of $4\sigma_{x,p}$) on focusing strength of quadrupole located in the chicane center

Op	tics st	ructure	of OS	coolin	<u>g insert</u>	ion		
N	Name	S[cm]	L[cm]	B[kG]	G[kG/cm]	type		
1	po	10	10			drift		
2	bWGLm	99.376	89.376			9 per.	wiggle	er
3	oL	131.252	30			drift		
4	qChF1	151.252	20		-0.5	quad		
5	оq	161.252	10			drift		
6	qChD	181.252	20		0.8475	quad		
7	oq	191.252	10			drift		
8	bChp	202.252	11	6.9	0	00	0	8.66202
9	od	212.252	10			drift		
10	bChm	223.252	11	-6.9	0	00	0	-8.66202
11	po	233.252	10			drift		
12	qChF	253.252	20		-0.184	quad		
13	oq	263.252	10			drift		
14	bChm	274.252	11	-6.9	0	00	0	-8.66202
15	od	284.252	10			drift		
16	bChp	295.252	11	6.9	0	00	0	8.66202
17	oq	305.252	10			drift		
18	qChD	325.252	20		0.8475	quad		
19	oq	335.252	10			drift		
20	qChF1	355.252	20		-0.5	quad		
21	oL	385.252	30			drift		
22	bWGLhp	386.502	89.376			9 per.	wiggle	er
23	oq	486.504	10			drift		

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

Cooling parameters

	Choice 2	Choice 3	MIT-Bates
Beam energy, MeV	86	150	300
SR transverse damping rate, s^{-1} , τ_x	0.29	3.7	0.2
Machine circumference, m	3	37.4	
Number of particles per bunch	3·10 ⁸		10 ⁸
Number on bunches	1		12
Rms horizontal emittance (SR equilibrium), cm	1.21*10 ⁻⁷	3.4*10 ⁻⁷	98*10 ⁻⁷
Rms momentum spread (SR equilibrium)	0.857*10 ⁻⁴	1.48*10 ⁻⁴	1.64*10 ⁻⁴
Rms bunch length (SR equilibrium), cm	11	11	-
Optical amplifier wave length, μ m	6	2	2
Delay in the chicane, mm	10	4	6
Electron beam offset in the chicane, mm	50	32	98
Undulator length [m] / Number of periods	1 / 10		2 / 20
Undulator type	flat		flat
Undulator parameter, K _u	2.2		3.5
Ratio of decrements, λ_s/λ_x	3	5	~7
Cooling range in σ	6	4	2.8 ?
Cooling rates with gain equal to 1, s ⁻¹ , λ_s/λ_x	10/32	12/62	-
Optical amplifier bandwidth	~10%	~10%	10%
Optical gain (amplitude)	15	10	90
Optical amplifier power, mW	30	30	-
Cooling rates with optical amplifier, s ⁻¹ , λ_s/λ_x	160/500	110/550	-

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

<u>6 μm versus 2 μm</u>

- 6 μm looks as much more attractive choice
 - A lot of flexibilities in every important parameter
 - Optical amplifier
 - Optics sensitivity to errors
 - cooling range
 - Optical amplifier needs to be investigated
- 2 μm looks attractive
 - Looks very attractive without optical amplifier
 - 2 mm pass length difference reduces optics problems
 - Order of magnitude gain in damping rates(relative to SR)
 O Helical undulators increase gain by ~2 times
 - However a possibility of its use with optical amplifier needs to be investigated
 - Is delay of 4 mm sufficient?
 - An increase of delay above 4 mm may be possible but it increases the ratio of decrements and sensitivity of optics to errors,

and increases difficulties of matching OSC section to a ring lattice

Discussion

- Optical stochastic cooling looks realistic with IOTA parameters
- Wave length of ~6 μ m is preferable
 - It has considerable freedom in cooling parameters
- **2** μ m choice requires an amplifier with \leq 4 mm delay
 - This possibility requires additional investigation

Backup Viewgraphs

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

Damping Rates of Optical Stochastic Cooling

Transfer Matrix Parameterization

Vertical degree of freedom is uncoupled and we will omit it in further consideration

$$\mathbf{M} = \begin{bmatrix} M_{11} & M_{12} & 0 & M_{16} \\ M_{21} & M_{22} & 0 & M_{26} \\ M_{51} & M_{52} & 1 & M_{56} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x \\ \theta_x \\ s \\ \Delta p / p \end{bmatrix}$$

M₁₆ & M₂₆ can be expressed through dispersion

$$\begin{bmatrix} M_{11} & M_{12} & M_{16} \\ M_{21} & M_{22} & M_{26} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} D_1 \\ D_1' \\ 1 \end{bmatrix} = \begin{bmatrix} D_2 \\ D_2' \\ 1 \end{bmatrix}$$

That yields

$$M_{16} = D_2 - M_{11}D_1 - M_{12}D_1'$$
$$M_{26} = D_2' - M_{21}D_1 - M_{22}D_1'$$

$$M_{11} = \sqrt{\frac{\beta_2}{\beta_1}} (\cos \mu + \alpha_1 \sin \mu)$$
$$M_{22} = \sqrt{\frac{\beta_1}{\beta_2}} (\cos \mu - \alpha_2 \sin \mu)$$
$$M_{12} = \sqrt{\beta_1 \beta_2} \sin \mu$$
$$M_{21} = \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_1 \beta_2}} \cos \mu - \frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu$$

Transfer Matrix Parameterization (continue)

Symplecticity ($\mathbf{M}^{\mathrm{T}}\mathbf{U}\mathbf{M} = \mathbf{U}$) binds up M_{51} , M_{52} and M_{16} , M_{26}

That yields

$$M_{51} = M_{21}M_{16} - M_{11}M_{26}$$

$$M_{52} = M_{22}M_{16} - M_{12}M_{26}$$
Finally one can write

$$M_{16} = D_2 - D_1 \sqrt{\frac{\beta_2}{\beta_1}} (\cos \mu + \alpha_1 \sin \mu) - D_1' \sqrt{\beta_1 \beta_2} \sin \mu$$

$$M_{26} = D_1 \left(\frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu + \frac{\alpha_2 - \alpha_1}{\sqrt{\beta_1 \beta_2}} \cos \mu \right) + D_1' - D_1' \sqrt{\frac{\beta_1}{\beta_2}} (\cos \mu - \alpha_2 \sin \mu)$$

$$M_{51} = -D_2 \left(\frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu + \frac{\alpha_2 - \alpha_1}{\sqrt{\beta_1 \beta_2}} \cos \mu \right) + D_2' - D_2' \sqrt{\frac{\beta_2}{\beta_1}} (\cos \mu + \alpha_1 \sin \mu)$$

$$M_{52} = -D_1 + D_2 \sqrt{\frac{\beta_1}{\beta_2}} (\cos \mu - \alpha_2 \sin \mu) - D_2' \sqrt{\beta_1 \beta_2} \sin \mu$$

In the first order the orbit lengthening due to betatron motion is equal to zero if $D_1 = D_1 = D_2 = D_2 = 0$

Transfer Matrix Parameterization (continue)

Partial momentum compaction and slip factor (from point 1 to point 2) are related to M₅₆

$$\Delta s_{1\to 2} \equiv 2\pi R \eta_1 \frac{\Delta p}{p} = M_{51} D_1 \frac{\Delta p}{p} + M_{52} D_1' \frac{\Delta p}{p} + M_{56} \frac{\Delta p}{p} + \frac{1}{\gamma^2} \frac{\Delta p}{p}$$

• Further we assume that v = c, v=c, i.e. $1/\gamma^2 = 0$ and $\eta_1 = \alpha_{1 \rightarrow 2}$.

That results in
$$\eta_1 = \frac{M_{51}D_1 + M_{52}D_1' + M_{56}}{2\pi R}$$
 or

$$M_{56} = 2\pi R \eta_1 + D_1 D_2 \left(\frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu + \frac{\alpha_2 - \alpha_1}{\sqrt{\beta_1 \beta_2}} \cos \mu \right) + D_1 D_2' \sqrt{\frac{\beta_2}{\beta_1}} (\cos \mu + \alpha_1 \sin \mu) - D_1' D_2 \sqrt{\frac{\beta_1}{\beta_2}} (\cos \mu - \alpha_2 \sin \mu) + D_1' D_2' \sqrt{\beta_1 \beta_2} \sin \mu$$

Thus, the entire transfer matrix from a point 1 to a point 2 can be expressed through the β -functions, dispersions and their derivatives at these points and the partial slip factor

Damping Rates of Optical Stochastic Cooling

Longitudinal kick

$$\frac{\delta p}{p} = \kappa \,\Delta L = \kappa \left(M_{151} x_1 + M_{152} \theta_{x_1} + M_{156} \frac{\Delta p}{p} \right)$$

Or in the matrix form: $\delta \mathbf{X} = \mathbf{M}_c \mathbf{X}_1$

Total ring matrix related to kicker (Ring&RF&damper)

 $\mathbf{M}_{tot}\mathbf{X}_{2} = \mathbf{M}_{1}\mathbf{M}_{2}\mathbf{X}_{2} + \mathbf{\delta}\mathbf{X}_{2} = \mathbf{M}_{1}\mathbf{M}_{2}\mathbf{X}_{2} + \mathbf{M}_{c}\mathbf{X}_{1} = (\mathbf{M}_{1}\mathbf{M}_{2} + \mathbf{M}_{c}\mathbf{M}_{2})\mathbf{X}_{2}$

 $\Rightarrow \qquad \mathbf{M}_{tot} = \mathbf{M} + \Delta \mathbf{M}_c \qquad \text{where} \qquad \mathbf{M} = \mathbf{M}_1 \mathbf{M}_2 , \quad \Delta \mathbf{M} = \mathbf{M}_c \mathbf{M}_2$

Damping Rates of Optical Stochastic Cooling (continue) Perturbation theory yields that the eigen-value correction is [HB2008]: $\delta\lambda_k = \frac{i}{2} \mathbf{v}_k^+ \mathbf{U} \Delta \mathbf{M} \mathbf{v}_k = \frac{i}{2} \mathbf{v}_k^+ \mathbf{U} \mathbf{M}_c \mathbf{M}_1^{-1} (\mathbf{M}_1 \mathbf{M}_2) \mathbf{v}_k = \frac{i}{2} \lambda_k \mathbf{v}_k^+ \mathbf{U} \mathbf{M}_c \mathbf{M}_1^{-1} \mathbf{v}_k$ Corresponding tune shift is: $\delta Q_k = \frac{i}{2\pi} \frac{\delta\lambda_k}{\lambda_k} = -\frac{1}{4\pi} \mathbf{v}_k^+ \mathbf{U} \mathbf{M}_c \mathbf{M}_1^{-1} \mathbf{v}_k$

Symplecticity relates the transfer matrix and its inverse:

 $\mathbf{M}_{1}^{-1} = -\mathbf{U} \mathbf{M}_{1}^{T} \mathbf{U}$

$$\Rightarrow \qquad \delta Q_k = \frac{1}{4\pi} \mathbf{v}_k^{\dagger} \mathbf{U} \mathbf{M}_c \mathbf{U} \mathbf{M}_1^{T} \mathbf{U} \mathbf{v}_k$$

Performing matrix multiplication and taking into account that symplecticity binds up M_{51} , M_{52} and M_{16} , M_{26} one finally obtains:

$$\delta Q_{k} = \frac{\kappa}{4\pi} \mathbf{v}_{k}^{+} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ M_{1_{26}} & -M_{1_{16}} & 0 & M_{1_{56}} \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{v}_{k}$$

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

Eigen-vectors and Damping Decrements (Mode 1)

- There are two eigen-vectors
 - One related to the betatron motion \mathbf{v}_1
 - And one related to the synchrotron motion \mathbf{v}_2
- They are normalized as: $\mathbf{v}_k^+ \mathbf{U} \mathbf{v}_k = -2i$
- If the synchrotron tune and dispersion in RF cavities are small the effect of RF can be neglected in the computation of v_1

• In this case
$$\lambda_1 = e^{-i\mu}$$
 and
the eigen-vector related to the kicker position is

$$\mathbf{v}_{1} = \begin{bmatrix} \sqrt{\beta_{2}} \\ -(i+\alpha_{2})/\sqrt{\beta_{2}} \\ \mathbf{v}_{1_{3}} \\ 0 \end{bmatrix}, \quad \mathbf{M}\mathbf{v}_{k} = \lambda_{k}\mathbf{v}_{k}, \quad \mathbf{M} = \begin{bmatrix} M_{11} & M_{12} & 0 & M_{16} \\ M_{21} & M_{22} & 0 & M_{26} \\ M_{51} & M_{52} & 1 & M_{56} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The first 2 components are the same as for uncoupled case. The third component has to be found from the third equation $v_{1_3} = -\frac{iD_2(1-i\alpha_2) + D'_2\beta_2}{\sqrt{\beta_2}}$ • Corresponding damping rate is $\lambda_1 = -2\pi \operatorname{Im} \delta Q_1$

$$= -\frac{\kappa}{2} \operatorname{Im} \left[\begin{bmatrix} \sqrt{\beta_2} \\ -(i+\alpha_2)/\sqrt{\beta_2} \\ v_{1_3} \\ 0 \end{bmatrix}^+ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ M_{1_{26}} & -M_{1_{16}} & 0 & M_{1_{56}} \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{\beta_2} \\ -(i+\alpha_2)/\sqrt{\beta_2} \\ v_{1_3} \\ 0 \end{bmatrix} \right]$$
$$= -\frac{\kappa}{2} \left(D_2 M_{1_{2,6}} - D'_2 M_{1_{1,6}} \right)$$

That yields

$$\lambda_{1} = -\frac{\kappa}{2} \left[D_{1}D_{2} \frac{(1+\alpha_{1}\alpha_{2})\sin\mu_{1} + (\alpha_{2}-\alpha_{1})\cos\mu_{1}}{\sqrt{\beta_{1}\beta_{2}}} - D_{1}'D_{2} \sqrt{\frac{\beta_{1}}{\beta_{2}}} (\cos\mu_{1}-\alpha_{2}\cos\mu_{1}) + D_{1}D_{2}' \sqrt{\frac{\beta_{2}}{\beta_{1}}} (\cos\mu_{1}+\alpha_{1}\sin\mu_{1}) + D_{1}'D_{2}' \sqrt{\beta_{1}\beta_{2}}\sin\mu_{1} \right]$$

Expressing it through the partial slip factor one gets

$$\lambda_1 = -\frac{\kappa}{2} \left(M_{56} - 2\pi R \eta_1 \right)$$

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

Eigen-vectors and Damping Decrements (Mode 2)

- To find the second eigen-vector we will ignore the second order effects of betatron motion on the longitudinal dynamics
 - The linerazed RF kick is

$$\frac{\delta p}{p} = -\Phi_s s$$

- Simple calculations yield for the eigen value $\lambda_1 = e^{-i\mu_s}$ where the synchrotron tune $\mu_s = \sqrt{2\pi R \eta \Phi_s}$
- Corresponding eigen-vector related to the kicker position is

$$\mathbf{v}_{1} = \begin{bmatrix} -iD_{2} / \sqrt{\beta_{s}} \\ -iD_{2}' / \sqrt{\beta_{s}} \\ \sqrt{\beta_{s}} \\ -i / \sqrt{\beta_{s}} \end{bmatrix}$$

where the longitudinal beta-function $\beta_s = 2\pi R \eta / \mu_s$

Corresponding damping rate is

$$\begin{split} \lambda_2 &= -2\pi \operatorname{Im} \delta Q_2 \\ &= -\frac{\kappa}{2} \operatorname{Im} \left(\begin{bmatrix} -iD_2 / \sqrt{\beta_s} \\ -iD_2' / \sqrt{\beta_s} \\ \sqrt{\beta_s} \\ -i/\sqrt{\beta_s} \end{bmatrix}^+ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ M_{126} & -M_{16} & 0 & M_{156} \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -iD_2 / \sqrt{\beta_s} \\ -iD_2' / \sqrt{\beta_s} \\ \sqrt{\beta_s} \\ -i/\sqrt{\beta_s} \end{bmatrix} \right) \\ &= -\frac{\kappa}{2} \Big(M_{156} - D_2 M_{126} + D_2' M_{16} \Big) \end{split}$$

Expressing the matrix elements through Twiss parameters one obtains

$$\lambda_2 = -\frac{\kappa}{2} M_{1_{56}} - \lambda_1 = -\pi \kappa R \eta_1$$

The last expression can be directly obtained from the definition of the partial slip factor

The above equation yields the sum of the decrements is

$$\lambda_1 + \lambda_2 = -\frac{\kappa}{2} M_{1_{56}}$$

Damping Rates for Smooth Lattice Approximation

For zero derivatives of beta-function and dispersion at pickup and kicker one obtains

$$\lambda_1 = -\frac{\kappa}{2} \frac{D_1 D_2}{\sqrt{\beta_1 \beta_2}} \sin \mu_1$$
$$\lambda_2 = -\frac{\kappa}{2} \left[M_{1_{56}} - \frac{D_1 D_2}{\sqrt{\beta_1 \beta_2}} \sin \mu_1 \right]$$

Smooth lattice approximation additionally yields

$$\beta = \frac{R}{\nu}, \quad D = \frac{R}{\nu^2}, \quad \mu_1 = \nu \frac{L_{pk}}{R} \quad \eta_1 = -\frac{L_{pk}}{2\pi\nu^2 R}, \quad M_{1_{56}} = -\frac{L_{pk}}{\nu^2} + \frac{R}{\nu^3} \sin\left(\nu \frac{L_{pk}}{R}\right),$$

where L_{pk} is the pickup-to-kicker path length, and v is the betatron tune

$$\lambda_{1} = -\frac{\kappa}{2} \frac{R}{\nu^{3}} \sin\left(\nu \frac{L_{pk}}{R}\right)$$
$$\lambda_{2} = \frac{\kappa}{2} \frac{L_{pk}}{\nu^{2}}$$

<u>Comparison to Zholents-Zolotorev result</u>

PRST-AB, v.7, p.12801 (2004)

Eqs. (A9) and (A11) in the paper Appendix can be rewritten in the following simplified form

$$\lambda_{1} = \frac{\kappa}{2} \left(D_{2} M_{1_{51}}^{-1} + D_{2}' M_{1_{52}}^{-1} \right)$$
$$\lambda_{2} = -\frac{\kappa}{2} \left(D_{2} M_{1_{51}}^{-1} + D_{2}' M_{1_{52}}^{-1} + M_{1_{56}}^{-1} \right)$$

The inverse of the matrix is

$$\mathbf{M}_{1}^{-1} = -\mathbf{U} \mathbf{M}_{1}^{T} \mathbf{U} = \begin{bmatrix} M_{122} & -M_{112} & 0 & M_{152} \\ -M_{121} & M_{111} & 0 & M_{151} \\ M_{126} & M_{116} & 1 & -M_{156} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Substituting expressions for matrix elements into above Eqs. for decrements one arrives to the same results

Sample Lengthening on Pickup-to-Kicker Travel

Zero length sample lengthens on its way from pickup-to-kicker

$$\sigma_{\Delta L}^{2} = \int \left(M_{1_{51}} x + M_{1_{52}} \theta_{x} + M_{1_{56}} \widetilde{p} \right)^{2} f\left(x, \theta_{x}, \widetilde{p}\right) dx d\theta_{x} d\widetilde{p} , \quad \widetilde{p} = \frac{\Delta \mu}{p}$$

where for Gaussian distribution

$$f(x,\theta_{x},\tilde{p}) = \frac{\exp\left(-\frac{\gamma_{p}\left(x-D_{p}\tilde{p}\right)^{2}+2\alpha_{p}\left(\theta_{x}-D_{p}\tilde{p}\right)\left(x-D_{p}\tilde{p}\right)+\beta_{p}\left(x-D_{p}\tilde{p}\right)-\frac{\tilde{p}^{2}}{2\sigma_{p}^{2}}\right)}{\sqrt{2\pi}2\pi\sigma_{p}\varepsilon}, \quad \gamma_{p} = \frac{1+\alpha_{p}^{2}}{\beta_{p}}$$

Performing integration one obtains

$$\sigma_{\Delta L}^{2} = \varepsilon \left(\beta_{p} M_{1_{51}}^{2} - 2\alpha_{p} M_{1_{51}} M_{1_{52}} + \gamma_{p} M_{1_{52}}^{2}\right) + \sigma_{p}^{2} \left(M_{1_{51}} D_{p} + M_{1_{52}} D'_{p} + M_{1_{56}}\right)^{2}$$

Expressing matrix elements through Twiss parameters yields $\sigma_{\Delta L}^{2} = \varepsilon F_{\varepsilon} + \sigma_{p}^{2} (2\pi R \alpha_{1\rightarrow 2})^{2}$ $F_{\varepsilon} = D_{p}^{2} \gamma_{p} + D_{k}^{2} \gamma_{k} - \frac{2D_{p}D_{k}}{\sqrt{\beta_{p}\beta_{k}}} ((1 + \alpha_{p}\alpha_{k})\cos\mu_{1} + (\alpha_{p} - \alpha_{k})\sin\mu_{1}) + D_{p}^{\prime 2}\beta_{p} + D_{k}^{\prime 2}\beta_{k} + 2D_{p}D_{p}^{\prime}\alpha_{p} + 2D_{p}D_{p}^{\prime}\alpha_{p} + 2D_{p}D_{k}^{\prime}\sqrt{\frac{\beta_{k}}{\beta_{p}}}(\sin\mu_{1} - \alpha_{p}\cos\mu_{1}) - 2D_{k}D_{p}^{\prime}\sqrt{\frac{\beta_{p}}{\beta_{k}}}(\sin\mu_{1} + \alpha_{k}\cos\mu_{1}) - 2D_{k}D_{p}^{\prime}\sqrt{\frac{\beta_{p}}{\beta_{k}}}\cos\mu_{1}$ For zero derivatives it yields

$$\sigma_{\Delta L}^{2} = \varepsilon \left(\frac{D_{k}^{2}}{\beta_{k}} + \frac{D_{p}^{2}}{\beta_{p}} - \frac{2D_{k}D_{p}}{\sqrt{\beta_{k}\beta_{p}}} \cos \mu_{1} \right) + \sigma_{p}^{2} \left(M_{1_{56}} - \frac{D_{k}D_{p}}{\sqrt{\beta_{k}\beta_{p}}} \sin \mu_{1} \right)$$

Longitudinal Kick by E.-M. Wave

Electric field of e.-m. wave focused at z=0 to the rms size σ_{\perp}

$$E_{x}(x, y, z, t) = \operatorname{Re}\left(E_{0}e^{i(\omega t - kz)}\frac{\sigma_{\perp}^{2}}{\sigma^{2}(z)}\exp\left(-\frac{1}{2}\frac{x^{2} + y^{2}}{\sigma^{2}(z)}\right)\right)$$

 $E_{y}(x, y, z, t) = 0$

$$E_{z}(x, y, z, t) = \operatorname{Re}\left(iE_{0}e^{i(\omega t - kz)}\frac{{\sigma_{\perp}}^{2}x}{k\sigma^{4}(z)}\exp\left(-\frac{1}{2}\frac{x^{2} + y^{2}}{\sigma^{2}(z)}\right)\right)$$

$$E_0 = \sqrt{\frac{8P}{c\sigma_\perp^2}}, \quad \sigma^2(z) = \sigma_\perp^2 - i\frac{z}{k}, \quad k = \frac{2\pi}{\lambda_w}$$

The beam is deflected in the x-plane by wiggler magnetic field

• That results in the beam energy change $\Delta E = e \int (\mathbf{E} \cdot \mathbf{v}) dt$

$$\Delta \mathbf{E} = eE_0 \int \operatorname{Re}\left\{ \left(\frac{dx}{dz} \frac{\sigma_{\perp}^2}{\sigma^2(z)} + \frac{i\sigma_{\perp}^2 x}{k\sigma^4(z)} \right) \exp\left[-\frac{1}{2} \frac{x^2 + y^2}{\sigma^2(z)} + ik \left(\frac{z}{2\gamma^2} + \frac{1}{2} \int_0^z \left(\frac{dx}{dz'} \right)^2 dz' \right) + i\psi \right] \right\} dz$$

where ψ is the accelerating phase ($\Delta E = 0$ for $\psi = 0$) and $\frac{1}{2}\int_{0}^{z} \left(\frac{dx}{dz'}\right)^{2} dz'$ represents the path length difference between light and beam introduced by wiggler (relative to wiggler center)

Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012

<u>References</u>

HB2008 - V. Lebedev, A. Burov, "Coupling and its Effects on Beam Dynamics", HB-2008