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Objective 
 Experimental test of Optical Stochastic cooling in IOTA 
 
Outline 
 Optical stochastic cooling principles  
 Beam optics requirements 

 Damping rates 
 Cooling range 

 Requirements to optical amplifier  
 Future possible applications  
 Conclusions 
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Optical Stochastic Cooling  
 Suggested by Zolotorev, Zholents and 

Mikhailichenko (1994) 
 Never tested experimentally   
 OSC obeys the same principles as the 

microwave stochastic cooling, but exploits the superior 
bandwidth of optical amplifiers ~ 1014 Hz 

 Undulator can be used as pickup & kicker 
 Pick-up and Kicker should be installed at locations with nonzero 

dispersion to have both  and L cooling. 
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MIT-Bates Proposal for Tevatron (2007) 

 
 Some deficiencies of the proposal will be discussed later 
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Main parameters of the Bates proposal (W. Franklin, PAC-2007) 
Beam energy 300 MeV 
SR transverse damping time 4.83 s 
Machine circumference 190.2 m 
Number of particles per bunch  108 
Number on bunches  12 
Rms horizontal emittance (SR equilibrium)  98*10-7 cm 
Rms momentum spread (SR equilibrium) 1.64*10-4 
Optical amplifier wave length 2 m 
Optical amplifier bandwidth  10% 
Optical gain (amplitude)   90 
Delay in the chicane  6 mm 
Undulator length / Number of periods  2 m / 20 
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Optical Stochastic Cooling Fundamentals   
 The sequence of our consideration  

 6x6 matrix parameterization 
 Matrix symplecticity is used 

 Damping rates in linear regime 
 Perturbation theory for symplectic motion 

 Damping rates for large amplitudes 
 Cooling range for finite amplitudes 
 Correction factors for the finite amplitude  

 Undulators 
 Gain and power of optical amplifier  

 Final expression for damping rates 
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Transfer Matrix Parameterization  
 Vertical plane is uncoupled and we omit it in further equations  
 Matrix from point 1 to point 2 
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through dispersion 
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 Symplecticity ( MT U M = U ) 
binds up M51,M52 and M16,M26  => 

 M56 is related to the partial slip 
factor, 12 

     => All matrix elements can be expressed through 56, , , , , 1, 2k k k kD D M k     
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Partial slip factor 
 Partial momentum compaction and slip factor (from point 1 to 

point 2) are related to M56   

1 2 56 51 1 52 1 56 2

1ˆ p p p p ps M M D M D M
p p p p p
           

 Further we assume that ,v c  i.e.  0/1 2   and 211   .  

 That results in  56 51 1 52 1 56M̂ M D M D M    
 Note that M56 sign is positive if a particle with positive p moves faster 

than the reference particle  
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M1 - pickup-to-kicker matrix 
M2 - kicker-to-pickup matrix 
M = M1M2 – ring matrix 
= 1+2    

kkk vMv   
  

Damping Rates of Optical Stochastic Cooling  
 Longitudinal kick 
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 Tune shifts 
Rewriting above Eq. in matrix form,  
adding the rest of the ring, and using  
perturbation theory for symplectic  
motion one obtains the tune shifts  

      1
1

4
T

k k c kQ


 v U M U M U v  
 

where U is unit symplectic matrix  
 Expressing matrix elements and eigen-

vectors through Twiss parameters one 
obtains the cooling rates:  
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 56

56

1 56

1

ˆ
2

ˆ
2

x

s

M M

M





  

 



Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012  10

Sample Lengthening on Pickup-to-Kicker Travel  
 Zero length sample lengthens on its way from pickup-to-kicker 
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 Performing integration one obtains for Gaussian distribution 
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 Both p/p and  contribute to the lengthening  
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Cooling Range 
 The cooling force depends on s nonlinearly   
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  
where ax & ap are the lengthening amplitudes due to  and L motions 
measured in units of laser phase (a = k s) 

 The form-factor for damping rate of longitudinal cooling for 
particle with amplitudes ax & ap 
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 Damping requires both lengthening 

 amplitudes be smaller 2.405 
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Cooling of the Gaussian beam 
 Averaging the cooling form-factors for Gaussian distribution 

can be presented in the following form 
22
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 Good beam lifetime requires the cooling force to be positive 
for large amplitude particles  

 Assuming that cooling becomes zero at 4 for both planes  
 k sp = k s

 = 0/4  0.6  
 Nonlinearity of cooling force results in the cooling force 

 reduction by factor 0 0 0 0( / 4, / 4) ( / 4, / 4) 0.697x sF F      
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Longitudinal Kick by E.-M. Wave 
 Electric field of flat e.-m. wave focused at z=0 to the rms size   
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 The beam is deflected in the x-plane by wiggler magnetic field  
 That results in the beam energy change   dte )( vE  

 Helical dipole suggest 2 times better kicker efficiency  
 Circular polarized light 
 Optical amplifier requires flat wave 

 For helical dipole 
 Resonance condition 
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Longitudinal Kick by E.-M. Wave (continue) 
 For helical kicker and large number 

of periods (nwgl >> 1) the helical 
kicker strength is (M. Zolotorev) 

2

2

0
max

1
837.8

u

u
wgl K

KPZn
e 




    

where 22
wgl

u
eBK
mc




  , Z0=377   
 The waist size is growing with 

kicker length – 

*

0.946

5.944
w

w

L

L

 


 

  

 The kicker is less effective than formula prediction for small nwgl  
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Damping rates  
 Assembling the above equations one obtains 
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Here G is the gain of power amplifier (in amplitude) 
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 Damping rate for flat undulator is 
about half of helical undulator with 
the same number of wiggles  
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Beam optics 
Sequence of optics adjustments 
 Set required delay in the chicane, s 
 Adjust focusing in the chicane center to get desired M56 

 That sets the sum of damping rates 
 In absence of focusing M562s 
 Defocusing reduces M56  

 Adjust dispersion and dispersion prime to make desired value of 
partial slip-factor, 56M̂  
 That determines the ratio of damping rates 

and the cooling range in momentum 
 Adjust beta-function through the chicane to minimize sample 

lengthening from pickup to kicker 
 For optics symmetrical relative to the chicane center the optimum is 

achieved when * is minimum in the center 
 Larger value at the ends yields larger range of horizontal damping 

 Adjust focusing outside of chicane to minimize beam sizes in wigglers 
  If necessary iterate to achieve desired parameters 
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Optics choice for the cooling chicane 
 3 choices were considered 

 Choice 1:w = 2 m, equal decrements  
 small delay of ~2 mm, therefore an optical amplifier hardly 

can be used 
 OSC without amplifier yields an order of magnitude faster 

damping than SR 
 Choice 2: w = 6 m, x  3s,  

 10 mm delay 
 Reasonable accuracy of beam optics is required 
 Reduced energy (150->86 MeV) if the same undulator is used. 
 Both active and passive coolings are possible 

 Choice 3: MIT-Bates like - w = 2 m, x  5s 
 4 mm delay – tough to squeeze an optical amplifier 
 High sensitivity to optics errors 

 All 3 choices can be realized in the same layout and hardware 
 Only strengths of dipoles and quadrupoles and the location of 

central quadrupole need to be changed  
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Optics for 2 m wavelength and s=4 mm  
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Twiss parameters (top) and rms beam sizes through OSC section 
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Optics for 2 m wavelength and s=4 mm (continue) 
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Optics for 2 m wavelength and s=4 mm (continue) 
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Dependence of ratio of decrements and longitudinal cooling acceptance (expressed in units of 4p) 
on dispersion and its derivative at the chicane entrance  
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Optics for 2 m wavelength and s=4 mm (continue) 

 
Dependence of transverse cooling acceptance (expressed in units of 4x) on beta- and alpha- 

functions at the chicane entrance  

      
Dependence of transverse and longitudinal cooling acceptances (expressed in units of 4x,p) on 

focusing strength of quadrupole located in the chicane center  
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Optics structure of OS cooling insertion 
N  Name  S[cm]  L[cm]  B[kG]  G[kG/cm]   type   
1  oq  10  10     drift 
2  bWGLm  99.376  89.376   9 per. wiggler 
3  oL  131.252  30     drift 
4 qChF1  151.252  20   -0.5  quad 
5  oq  161.252  10     drift 
6  qChD  181.252  20   0.8475  quad 
7  oq  191.252  10     drift 
8  bChp  202.252  11  6.9  0  0  0  0  8.66202 
9  od  212.252  10     drift 
10  bChm  223.252  11  -6.9  0  0  0  0  -8.66202 
11  oq  233.252  10     drift 
12  qChF  253.252  20   -0.184  quad 
13  oq  263.252  10     drift 
14  bChm  274.252  11  -6.9  0  0  0  0  -8.66202 
15  od  284.252  10     drift 
16  bChp  295.252  11  6.9  0  0  0  0  8.66202 
17  oq  305.252  10     drift 
18  qChD  325.252  20   0.8475  quad 
19  oq  335.252  10     drift 
20  qChF1  355.252  20   -0.5  quad 
21  oL  385.252  30     drift 
22  bWGLhp  386.502  89.376   9 per. wiggler 
23  oq  486.504  10     drift 



Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012  23

Cooling parameters 
 Choice 2 Choice 3 MIT-Bates 
Beam energy, MeV 86  150 300  
SR transverse damping rate, s-1, x 0.29  3.7  0.2  
Machine circumference, m 37.4  190.2  
Number of particles per bunch  3·108 108 
Number on bunches  1 12 
Rms horizontal emittance (SR equilibrium), cm  1.21*10-7  3.4*10-7  98*10-7  
Rms momentum spread (SR equilibrium) 0.857*10-4 1.48*10-4 1.64*10-4 
Rms bunch length (SR equilibrium), cm 11 11  - 
Optical amplifier wave length, m 6  2  2  
Delay in the chicane, mm  10  4  6  
Electron beam offset in the chicane, mm  50  32  98 
Undulator length [m] / Number of periods  1 / 10 2 / 20 
Undulator type  flat flat 
Undulator parameter, Ku   2.2 3.5 
Ratio of decrements,  s/x  3 5 ~7 
Cooling range in  6 4 2.8 ? 
Cooling rates with gain equal to 1, s-1,  s/x 10/32 12/62 - 
Optical amplifier bandwidth  ~10% ~10% 10% 
Optical gain (amplitude)   15 10 90 
Optical amplifier power, mW 30 30 - 
Cooling rates with optical amplifier, s-1, s/x 160/500  110/550  - 
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6 m versus 2 m 
 6 m looks as much more attractive choice 

 A lot of flexibilities in every important parameter 
 Optical amplifier  
 Optics sensitivity to errors 
 cooling range 

 Optical amplifier needs to be investigated 
 2 m looks attractive 

 Looks very attractive without optical amplifier 
 2 mm pass length difference reduces optics problems 
 Order of magnitude gain in damping rates(relative to SR) 

o Helical undulators increase gain by ~2 times 
 However a possibility of its use with optical amplifier needs to be 

investigated 
 Is delay of 4 mm sufficient? 
 An increase of delay above 4 mm may be possible  

but it increases the ratio of decrements and sensitivity of optics to 
errors, 
and increases difficulties of matching OSC section to a ring lattice  
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Discussion 
 Optical stochastic cooling looks realistic with IOTA 

parameters 
 Wave length of ~6 m is preferable  

 It has considerable freedom in cooling parameters 
 2 m choice requires an amplifier with ≤4 mm delay  

 This possibility requires additional investigation  
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Backup Viewgraphs 
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Damping Rates of Optical Stochastic Cooling 
Transfer Matrix Parameterization  
 Vertical degree of freedom is 

uncoupled and we will omit it in 
further consideration 
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 M16 & M26 can be expressed 
through dispersion 
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That yields 
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Transfer Matrix Parameterization (continue) 
 Symplecticity ( MT U M = U ) binds up M51,M52 and M16,M26 
 That yields   
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 Finally one can write 
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 In the first order the orbit lengthening due to betatron motion 
is equal to zero if D1 = D`1 =  D2 = D`2 =  0 
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Transfer Matrix Parameterization (continue) 
 Partial momentum compaction and slip factor (from point 1 to point 2) 

are related to M56   
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 Further we assume that ,v c v=c, i.e.  0/1 2   and 211  .  

 That results in  R
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 Thus, the entire transfer matrix from a point 1 to a point 2 can be 
expressed through the -functions, dispersions and their derivatives 
at these points and the partial slip factor  
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Uext1 1

1


`D D T2  2 2   2
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M1 - pickup-to-kicker matrix 
M2 - kicker-to-pickup matrix 
M = M1M2 – ring matrix 
= 1+2  
 

    kkk vMv   


Damping Rates of Optical Stochastic Cooling  
Longitudinal kick 
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Or in the matrix form: 1XMδX c  
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Total ring matrix related to kicker  
(Ring&RF&damper)  
 

  2221122122212 XMMMMXMXMMδXXMMXM cctot   
 

 ctot ΔMMM      where  221 , MMΔMMMM c  
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Damping Rates of Optical Stochastic Cooling (continue) 
Perturbation theory yields that the eigen-value correction is [HB2008]: 
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Symplecticity relates the transfer matrix and its inverse:  
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Performing matrix multiplication and taking into account that 
symplecticity binds up M51,M52 and M16,M26 one finally obtains: 
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Eigen-vectors and Damping Decrements (Mode 1) 
 There are two eigen-vectors 

 One related to the betatron motion 1v  
 And one related to the synchrotron motion 2v  

 They are normalized as: ikk 2 vUv  
 If the synchrotron tune and dispersion in RF cavities are small 

the effect of RF can be neglected in the computation of 1v  
  In this case  ie1  and  

the eigen-vector related to the kicker position is 
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The first 2 components are the same as for uncoupled case. 
The third component has to be found from the third equation 

=>     
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 Corresponding damping rate is 
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 That yields 
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Expressing it through the partial slip factor one gets 
 1561 2

2
 RM   



Optical stochastic cooling in IOTA, Valeri Lebedev, Feb. 23, 2012  34

Eigen-vectors and Damping Decrements (Mode 2) 
 To find the second eigen-vector we will ignore the second 

order effects of betatron motion on the longitudinal dynamics   
 The linerazed RF kick is 

s
p
p

s


 
 Simple calculations yield for the eigen value sie  1  

where the synchrotron tune ss R   2  
 Corresponding eigen-vector related to the kicker position is 
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where the longitudinal beta-function ss R  /2  
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 Corresponding damping rate is 

 
162656

561626

12121

2

2

111

2

2

22

2

/

/
/

0000
0

0000
0000

/

/
/

Im
2

Im2

MDMDM

i

Di
iD

MMM
i

Di
iD

Q

s

s

s

s

s

s

s

s




















































































































 

 Expressing the matrix elements through Twiss parameters 
one obtains  

 

1112 562
 RM   

The last expression can be directly obtained from the 
definition of the partial slip factor 

 The above equation yields the sum of the decrements is  

56121 2
M   
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Damping Rates for Smooth Lattice Approximation 
 For zero derivatives of beta-function and dispersion at pickup 

and kicker one obtains  
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 Smooth lattice approximation additionally yields 
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Comparison to Zholents-Zolotorev result 
 PRST-AB, v.7,p.12801 (2004) 

Eqs. (A9) and (A11) in the paper Appendix can be rewritten in the 
following simplified form 

 

 1
1

1
12

1
122

1
12

1
121

565251

5251

2

2








MMDMD

MDMD





 

The inverse of the matrix is 
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Substituting expressions for matrix elements into above Eqs. for 
decrements one arrives to the same results  
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Sample Lengthening on Pickup-to-Kicker Travel  
 Zero length sample lengthens on its way from pickup-to-kicker 
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 Performing integration one obtains 
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 For zero derivatives it yields 
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Longitudinal Kick by E.-M. Wave 
 Electric field of e.-m. wave focused at z=0 to the rms size   
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 The beam is deflected in the x-plane by wiggler magnetic field  
 That results in the beam energy change   dte )( vE  
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where  is the accelerating phase (= 0 for = 0) 
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 represents the path length difference between 

light and beam introduced by wiggler (relative to wiggler center) 
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Estimate of Energy Kick in Helical Wiggler 
 Assuming that  <<  the kick amplitude is 
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 The function  2/1sinh xx  achieves its maximum at 54884.00  cx  
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 The condition of resonance is:   wglkk  2/)2/(1 2
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