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CMB-HD: Next-generation, ground-based, CMB experiment
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CMB-HD

Instrument and Survey

Two 30-meter off-axis crossed Dragone telescopes
Each with 800,000 detectors (200,000 pixels)
Location: Cerro Toco in the Atacama Desert

Survey: 50% of sky, 7.5 years, 0.5 uK-arcmin noise in temp, 15 arcsecond resolution -
(5 times better resolution and 3 times deeper than the CMB-S4 wide survey)

CMB-HD Collaboration

e 55 people currently; open collaboration roughly following model of Rubin Observatory
Scale of Investment

e 1 billion dollar project; joint NSF and DOE investment needed
DOE laboratory system instrumental for detector and instrumentation delivery
Timescale

e 2 yearsdesign + 2 years construction; 7.5 years of survey operations

R+D Plan

e Several enabling technologies being developed and advanced by current experiments (e.g. GBT,
SO, CCAT-prime, BLAST-TNG, TolTEC -- see 2002.12714 for details)

Neelima Sehgal, Stony Brook University



Techniques to Probe Axion-like Dark Matter

* Ultra-high Resolution CMB Lensing to Probe Small-scale Structure
* A Time-Varying Axion Dark Matter Signal in the Polarized CMB

 Measuring Photon-ALPs Conversion using CMB as a Backlight
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e CMB Lensing is when
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e [raditionally measured to
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e More recently, it has been
used to measure halo-
sized objects

First Measurement of CMB Lensing on Halo Scales
Madhavacheril, NS, for the ACT Collaboration
PRL, 114, 2015
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Advantages of CMB Lensing
to Probe Small-Scale Structure

1. Directly sensitive to dark matter via gravitational lensing
2. Source light is at well-defined redshift
3. Properties of primordial CMB are well understood

4. Sensitive to structure at higher redshifts than other
gravitational lensing probes; this makes it more sensitive
to FDM/WDM-type models

Neelima Sehgal, Stony Brook



CMB-HD Dark Matter Forecasts Using
Small-Scale CMB Lensing
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A Time-Varying Axion Dark Matter Signal in
the Polarized CMB

A varying axion background field causes cosmic birefringence.

CMB polarization rotates:
AO = (g4,12) Ad(ty, ) = (84,/2) o — @]

FDM axions oscillate “rapidly” (on cosmological timescales): distinct CMB @ @ @ @
phenomenology.

Text and Figure credit: Michael A. Fedderke



A Time-Varying Axion Dark Matter Signal in
the Polarized CMB

A varying axion background field causes cosmic birefringence.
CMB polarization rotates:

A0 = (84,12) Adp(tgs 1) = (24,/2) [y — ]

FDM axions oscillate “rapidly” (on cosmological timescales): distinct CMB

phenomenology.

Important Properties of the Signal

On-the-sky oscillation of the CMB polarization angle at every point.
Period of ~ a year to ~ a few hours. Set by axion mass.
Phase-coherent in time: Tgon ~ 10° x Ty 2 10°yrs

In-phase across the whole sky. Depends on local axion field only.

Not subject to cosmic variance. Time variation of the realized sky.

Depends only on polarization, not temperature.

Non-trivial cross-checks on signal; distinct from many non-instrumental
backgrounds.
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Measuring Photon-ALPs Conversion using CMB as a Backlight

A simplistic description of the phenomenon: photon to ALPs conversion
Signature: Polarized spectral distortions of CMB black body

MukherJee Kha\i, Wandelt JCAP 04 (2018) 045

Unpolarized CMB photons Loss of CMB photons

Text and Figure credit: Suvodip Mukherjee
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A simplistic description of the phenomenon: photon to ALPs conversion Resonant conversion

Signature: Polarized spectral distortions of CMB black body Happen at places where ALPs mass equals
photon mass in the plasma

MukherJee Kha\i, Wandelt JCAP 04 (2018) 045 MICROWAVE RACKGROUND
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Measuring Photon-ALPs Conversion using CMB as a Backlight

Resonant conversion

Happen at places where ALPs mass equals
photon mass in the plasma

A simplistic description of the phenomenon: photon to ALPs conversion
Signature: Polarized spectral distortions of CMB black body
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Measuring Photon-ALPs Conversion using CMB as a Backlight

A simplistic description of the phenomenon: photon to ALPs conversion
Signature: Polarized spectral distortions of CMB black body
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Conversion of CMB photons to ALPs wiill
produce a new CMB polarization distortion
at the location of galaxy clusters

<«— Upcoming CMB experiments will probe a
new parameter space of photon-axion
coupling and axion mass not explored by
other probes

Text and Figure credit: Suvodip Mukherjee



Back up slide



CMB-HD Probe of Light Particles

Table 1: Summary of CMB-HD key science goals in fundamental physics

Science Parameter Sensitivity
Dark Matter S/N: Significance in Differentiating FDM/WDM from CDM* S/N =8
New Light Species Neg: Effective Number of Relativistic Species® o(Neg) = 0.014
Inflation fni,: Primordial Non-Gaussianity® o(fnn) = 0.26
Inflation Ajens: Residual Lensing B-modes! Ajens = 0.1

NS et al. 2019, CMB-HD APC White Paper for Astro2020 Decadal (arXiv:1906.10134)
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