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• Axions convert into photons in presence of strong magnetic field 

• Mass is unknown 

• So: narrowband photon signal of an unknown frequency is generated (need to scan frequency) 

• Three regimes of haloscope detector

DC Magnetic Haloscopes

ma ωa ≈
mac2

ℏ
λa =

h
mac

λa ∼ dexp ∼ 1cm → 1m ωa

2π
∼ 300 MHz → 30 GHz

λa ∼ dexp

• Resonant

λa < dexp

• Propagative

λa > dexp

• Lumped Element 
Reactive

ma ∼ 1 μeV → 100 μeV

ma[eV] ≡
ma[kg]c2

qe
1eV = 1.8 × 10−36[kg]

Resonant:
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ma1.25 × 10−6
eV

Hz
ωa

2π300 MHz 30 GHz
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REMEMBERING POYNTING THEOREM

⃗S 1(t) =
1
μ0

⃗E 1(t) × ⃗B 1(t) =
1
2 (E1e−jω1t + E*1 ejω1t) ×

1
2μ0

(B1e−jω1t + B*1 ejω1t)
=

1
2μ0

Re (E1 × B*1 ) +
1

2μ0
Re (E1 × B1 e−j2ω1t),

S1 =
1

2μ0
E1 × B*1 and S*1 =

1
2μ0

E*1 × B1,

Instantaneous Poynting vector in vacuum

Complex Poynting vector in vacuum

Re (S1) =
1
2

(S1 + S*1 ) and j Im (S1) =
1
2

(S1 − S*1 ) .

⟨ ⃗S 1⟩ =
1
T ∫

T

0

⃗S 1(t)dt =
1
T ∫

T

0 [ 1
2μ0

Re (E1 × B*1 ) +
1

2μ0
Re (E1 × B1e−2jωt)] dt =

1
2μ0

Re (E1 × B*1 )

Time Average Power Reactive Power 

• Basic conservation law for electromagnetic energy for AC system 
• Describes complex power flow (phasors) in a volume, considering: 1) Sources, 2) Storage, 3) Dissipation, 4) Radiation 
• The direction and density of power flow at a point is defined by the instantaneous Poynting vector,  [W/m2]⃗S (t)

• The corresponding phasor form of the Poynting vector

Combing the Poynting vector with 
Maxwell’s Equations -> 

Leads to Poynting Theorem

1) Instantaneous Poynting Theorem 
2) Complex Poynting Theorem



CONSIDERATION OF POYNTING VECTOR IN AXION ELECTRODYNAMICS:  
THE ABRAHAM-MINKOWSKI CONTROVERSY

* Poynting vector in Electrodynamics -> Over a century of Controversy, chose  or  in matter ? 

* Pfeifer et. al., Momentum of an electromagnetic wave in dielectric media, Reviews of Modern Physics 79(4), 1197-1216 (2007).  -> 
Addresses the Abraham-Minkowski controversy, conclude: both valid depends on system. 

* Kinsler et al., Four Poynting theorems, Eur. J. Phys. 30 (2009) 983–993. Enables interpretation of four Poynting vectors and interaction 
with the medium -> choosing the best Poynting vector depend on the medium and experimental set up. 

* DJ Griffiths, Resource Letter EM-1: Electromagnetic Momentum, Am. J. Phys. 80, 7 (2012) -> Abraham–Minkowski controversy 
regarding the field momentum in polarizable and magnetizable media: Correct one depends on the detailed nature of the material.

SM =
1

ϵ0μ0
(D × B) SA = (E × H)

Measured by Jones et al, when media does not move

Size of the central maximum in single-slit diffraction
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GENERAL FORM OF MAXWELL’S EQUATIONS IN MATTER

Polarization can also be defined  
in free charge voltage source 

∇ × ⃗P ≠ 0

Bound Electric and/or Magnetic Current Models?

Bound Charge Voltage Source 
Electret  

Non-conservative
→ ∇ × ⃗P ≠ 0

Permanent Magnet 
→ ∇ × ⃗M ≠ 0

1) Modified Ampere’s Law (mmf generator)

∇ × B = μ0( ⃗J f + ⃗J b) ; ⃗J b = ⃗J P + ⃗J M = ∂t
⃗P + ∇ × ⃗M

ϱP = − ∇ ⋅ ⃗P
Dielectric term

Permanent 
Magnet term

∇ ⋅ ⃗J P = − ∂tρb
Polarization Current

Model as fictitious bound 
monopole currents 
or fictitious bound 

“Ampèrian”currents
 

Engineers call impressed field 
Could label as Fictitious Electric field

ϵ0∇ × ⃗E i

∇ × ⃗D = − ϵ0μ0∂t( ⃗H + ⃗M) + ∇ × ⃗P = − ϵ0μ0∂t
⃗H − ϵ0

⃗J mb

2) Modified Faraday’s Law (emf generator)

⃗J mb = ⃗J mM + ⃗J mP = μ0∂t
⃗M −

1
ϵ0

∇ × ⃗P

ϱM = − μ0∇ ⋅ ⃗M

∇ ⋅ ⃗J mM = − ∂tϱM
Magnetisation Magnetic Current

Permanent Electret term 
(Non-conservative, 

Metastable)



• EMF per unit length [V/m], is 
like a Fictitious  Electric field


• Does not conform to Maxwell’s 
equations


• Outside Maxwell’s equations

Fictitious  Force



Model of Current and Voltage Source (Impressed)

⃗J ei ⃗J mi

NON CONSERVATIVE MAXWELL’S EQUATIONS

Je = Jei + Jec = Jei + σeE
Jm = Jmi + Jmc = Jei + σmH

• Engineering Systems are in general “non-conservative”  
• Engineers keep Maxwell’s equations general, with both fictitious magnetic 

and electric sources 
• Magnetic monopoles do not exist, but magnetic dipoles do! 
• Magnetic charge occurs in pairs, does not contradict no monopoles

∇ × H = Jei + jωϵoϵ̃rE
∇ × E = − Jmi − jωμoμ̃rH

• Subscript i -> Impressed (or excitation Currents} 
• Subscript c -> Loss term (conductivity)

+σm = B0

−σm = − B0

⃗M = M ̂z

S

N

Spinning magnet of radius R
Unipolar Generator

: magnetic pole 
distribution integrates to 0

ρm

B0

ω ̂θ

V = B0Rω

V

+ −
+

⃗P

N

S

⃗M

⃗J m = σm ⃗v

= B0rω ̂θ

− ⃗J m

Phasor Form for AC Sources

Surface Magnetic 
Charge

Converts mechanical motion to EM energy
Fictitious electric field: External Lorentz force/unit charge  



COMPLEX POYNTING THEOREM: CIRCUITS/ANTENNAS 

Model of Current and Voltage Source (Impressed)

Even though magnetic sources do not exist, they can be engineered

Here Balanis uses  as magnetic current⃗M



∇ ⋅ (E × H*) = jωϵ* |E |2 − jωμ |H |2 − J*i ⋅ E − Mi ⋅ H*

1
2 ∮Sc

(E × H*) ⋅ ds =
1
2 ∫V

[jωϵ* |E |2 + jωμ |H |2 − J*i ⋅ E − Mi ⋅ H*] dv

1
2

Re∮Sc

(E × H*) ⋅ ds = Pei + Pmi − Pd

1
2

Im∮Sc

(E × H*) ⋅ ds = 2ω [We − Wm] −
1
2

Im∫ [J*i ⋅ E + Mi ⋅ H*] dv

Pei = −
1
2 ∫V

Re (J*i ⋅ E) dv =  average outgoing power due to the source J*i

Pmi = −
1
2 ∫V

Re (Mi ⋅ H*) dv =  average outgoing power due to the source Mi

Pd =
1
2 ∫V

σ |E |2 dv =  average power dissipated in V

We =
1
4 ∫V

ϵoϵr |E |2 dv =  average electric energy in V Wm =
1
4 ∫V

μoμr |H |2 dv =  average magnetic energy in V

E ⋅ ∇ × H* = J*i ⋅ E − jωϵ*E* ⋅ E = J*i ⋅ E − jωϵ* |E |2

H* ⋅ ∇ × E = − Mi ⋅ H* − jωμH ⋅ H* = − Mi ⋅ H* − jωμ |H |2

Maxwell’s Equations Phasor Form

∇ ⋅ (E × H*) = H* ⋅ ∇ × E − E ⋅ ∇ × H*
Vector Identity

Integrate over volume, apply Divergence theorem

Real part is average power:   Imaginary part is complex power

Pav =
1
2

Re∮Sc

(E × H*) ⋅ ds

Average radiated power outside V

complex power

−
1
2 ∫V

J*i ⋅ Edv

−
1
2 ∫V

Mi ⋅ H*dv

COMPLEX POYNTING THEOREM: CIRCUITS/ANTENNAS 

Here Balanis uses  as magnetic current⃗M
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IMAGINARY POYNTING VECTOR INSIDE CAVITY

However

Dissipation


Gives real part 
of Poynting 

vector

At resonance Poynting vector is 
REAL


Small dissipation: Power builds up

Enhanced power per cycle with 

large Q



EQUIVALENT CIRCUIT AND POYNTING VECTOR

• Reactive Power Oscillates between Electric and 
Magnetic field in the cavity as Stored Energy


• Source does not need to provide reactive power 
on resonance


• Steady state: Source power balanced by 
dissipative power in resonator


• High-Q, low-loss per cycle, power in resonator 
builds up (circulating power put into narrow 
frequency bandwidth)

Here Balanis uses  as magnetic current⃗M



PROPAGATING POYNTING VECTOR IS REAL

INDUCTOR OR CAPACITOR HAS AN IMAGINARY POYNTING VECTOR



gaγγ

• Two-photon transition, interaction Hamiltonian density 
  :   ℋ = ℋEM + ℋa + ℋint ℋint = ε0cgaγγaE ⋅ B

Axion-Photon Coupling

a
One Axion

Axion Equation of Motion: 
Klein–Gordon equation for 

massive spin 0 particle 

γ2

Two Photons

γ1

∇ × ⃗B 1 = μ0ϵ0∂t
⃗E 1 + μ0

⃗J e1

∇ × ⃗E 1 = − ∂t
⃗B 1

∇ ⋅ ⃗B 1 = 0

∇ ⋅ ⃗E 1 = ϵ−1
0 ρe1

∇ × ⃗B 2 = μ0ϵ0∂t
⃗E 2 + μ0

⃗J e2

∇ × ⃗E 2 = − ∂t
⃗B 2

∇ ⋅ ⃗B 2 = 0

∇ ⋅ ⃗E 2 = ϵ−1
0 ρe2

Equation of Motion: 
Maxwell’s Equations 

( □ +
m2

a c2

ℏ2 ) a = − gaγγε0cE ⋅ B

□ = c−2∂t∂t − ∇2

• Axion is predicted to couple to photons, coupling parameter, gaγγ

Axion Coupling to two Photonic Degree of Freedoms Modifies Electrodynamics



a(t) =
1
2 (ãe−jωat + ã*ejωat)

= Re (ãe−jωat)

Axion Equation of Motion: 

Klein–Gordon equation 
for massive spin 0 

particle 

Haloscopes
• Axions convert into photons in presence of strong background 

electromagnetic field

∇ ⋅ ⃗E =
ρe

ε0
+ cgaγγ

⃗B . ∇a

∇ × ⃗B −
1
c2

∂t
⃗E =

μ0
⃗J e − gaγγϵ0c ( ⃗B ∂ta + ∇a × ⃗E )

∇ ⋅ ⃗B = 0
∇ × ⃗E + ∂t

⃗B = 0

Modified Axion Electrodynamics 

(Represents two photons) ϵ0∇ ⋅ ⃗E 1 = ρe1 + ρab

1
μ0

∇ × ⃗B 1 − ϵ0∂t
⃗E 1 = ⃗J e1 + ⃗J ab + ⃗J ae

ρab = gaγγϵ0c∇ ⋅ (a(t) ⃗B 0( ⃗r, t))
⃗J ab = − gaγγϵ0c∂t (a(t) ⃗B 0( ⃗r, t))
⃗J ae = − gaγγϵ0c∇ × (a(t) ⃗E 0( ⃗r, t))
∇ ⋅ ⃗J ab = − ∂tρab

Source Terms generate Photons->  
From background fields mixing with axion

1) Background field 
(subscript zero) 

2) Created Photon Field 
(subscript 1)



⃗B 0

γ0

γ1

∇ ⋅ ⃗E =
ρe

ε0
+ cgaγγ

⃗B . ∇a

∇ × ⃗B −
1
c2

∂t
⃗E =

μ0
⃗J e − gaγγϵ0c ( ⃗B ∂ta + ∇a × ⃗E )

∇ ⋅ ⃗B = 0
∇ × ⃗E + ∂t

⃗B = 0

Modified Axion 
Electrodynamics 

(Represents two 
photons)

∇ ⋅ ( ⃗E 1( ⃗r, t) − gaγγa(t)c ⃗B 0( ⃗r, t)) =
ρe1

ϵ0

∇ × (c ⃗B 1( ⃗r, t) + gaγγa(t) ⃗E 0( ⃗r, t))
−

1
c

∂t ( ⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)c ⃗B 0( ⃗r, t)) = cμ0
⃗J e1

∇ ⋅ c ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) +
1
c

∂tc ⃗B 1( ⃗r, t) = 0.

∇ ⋅ ⃗D1 = ρe1

∇ × ⃗H1 − ∂t
⃗D1 = ⃗J e1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0,

∇ × ⃗B 0 = μ0ϵ0∂t
⃗E 0 + μ0

⃗J e0

∇ × ⃗E 0 = − ∂t
⃗B 0

∇ ⋅ ⃗B 0 = 0

∇ ⋅ ⃗E 0 = ϵ−1
0 ρe0

Applied Background Field

Measure Created Photon

⃗H1( ⃗r, t) =
⃗B 1

μ0
− ⃗M1 − ⃗Ma1;

⃗D1( ⃗r, t) = ϵ0
⃗E 1 + ⃗P 1 + ⃗P a1

Constitutive Relations(Include Matter) 

ωa ≈
mac2

ℏ

=
2πc
λa

∇ × ⃗B 0 = μ0
⃗J e0

∇ ⋅ ⃗B 0 = 0

λa =
h

mac

Photonic Haloscope Equations in terms of Auxiliary Fields

⃗Ma1 = − gaγγa(t)cϵ0
⃗E 0( ⃗r, t) and

1
ϵ0

⃗P a1 = − gaγγa(t)c ⃗B 0( ⃗r, t)

∇ × ⃗D1( ⃗r, t) = − ∂t
⃗B 1( ⃗r, t) + ∇ × ( ⃗P 1 + ⃗P a1)

∇ × ⃗P a1 ≠ 0 = − gaγγa(t)c∇ × ⃗B 0( ⃗r, t) (∇a = 0)

⃗J ab( ⃗r, t) =
∂ ⃗P a1( ⃗r, t)

∂t



Poynting vector analysis of photonic conversion of the dark matter axion 
mixing with a background DC magnetic Field

• Apply Poynting theorem to axion modified electrodynamics 

• Two possible Poynting vectors, analogous to the Abraham Poynting vector and 
Minkowski Poynting vector 

• Minkowski picks up the extra non-conservative terms 

• The non-conservative terms -> categorised as “curl forces” -> non-
conservative and non-dissipative forces 

• Fictitious Electric Field: Outside of the conservative Maxwell’s Equations. 

• Both give the same sensitivity for a resonant cavity axion haloscope, but predict 
markedly different sensitivity for low-mass broad band reactive haloscopes.



Curl Force Electret-> Curl Force

Electric Vector Potential

∇ × ⃗D = − ϵ0μ0∂t( ⃗B ) + ∇ × ⃗P

Curl Force in Axions Electrodynamics

⃗B 0( ⃗r ) =
μ0

4π ∫Ω

⃗∇ × ⃗J i
DC ( ⃗r′ )

⃗r − ⃗r′ 
d3 ⃗r′ 

⃗E a1( ⃗r, t) = − gaγγa(t)c ⃗B 0( ⃗r )

Fictitious Electric field

= −
1

4π ∫Ω

⃗∇ × ⃗J i
ma ( ⃗r′ , t)

⃗r − ⃗r′ 
d3 ⃗r′ 

⃗J m1a = gaγγa(t)μ0c ⃗J e0

1
ϵ0

∇ × ⃗D1 = ∇ × ⃗E 1 − gaγγc∇ × (a ⃗B 0) = − (∂t
⃗B 1 + gaγγa(t)cμ0

⃗J e0)

Axion Modified Faraday’s Law

Magnetic Vector Potential generates a Conservative Force -> Not a non-conservative Curl force 



AXION ELECTRODYNAMICS IN HARMONIC PHASOR FORM

a(t) = 1
2 (ãe−jωat + ã*ejωat) = Re (ãe−jωat)

Axion Scalar Field

Ã = ãe−jωat Ã* = ã*ejωat
Axion Phasor

⃗E 1( ⃗r, t) = 1
2 (E1( ⃗r )e−jω1t + E*1 ( ⃗r )ejω1t) = Re [E1(r)e−jω1t]
Cavity Electric Field

Ẽ1( ⃗r, t) = E1( ⃗r )e−jω1t Ẽ*1 ( ⃗r, t) = E*1 ( ⃗r )ejω1t

Cavity Electric Field Phasor

1
μ0

∇ × B̃1 = J̃e1 − jω1ϵ0Ẽ1 + jωagaγγϵ0cÃ ⃗B 0

1
μ0

∇ × B̃*1 = J̃*e1 + jω1ϵ0Ẽ*1 − jωagaγγϵ0cÃ* ⃗B 0,

Ampere’s law in phasor form

∇ × Ẽ1 = jω1 × B̃1

∇ × Ẽ*1 = − jω1 × B̃*1 ,

Faraday’s law in phasor form (Abraham)
1
μ0

∇ × ⃗B 1( ⃗r, t)) = ⃗J e1
+ ∂t (ϵ0

⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)ϵ0c ⃗B 0( ⃗r, t))
Ampere’s law in time dependent form

1
ϵ0

∇ × D̃1 = jω1B̃1 − gaγγcμ0Ã ⃗J e0

1
ϵ0

∇ × D̃*1 = − jω1B̃*1 − gaγγcμ0Ã* ⃗J e0

Alternative Faraday’s law in phasor form (Minkowski)



COMPLEX ABRAHAM POYNTING VECTOR FOR A DC AXION HALOSCOPE

S =
1

2μ0
E1 × B*1 and S* =

1
2μ0

E*1 × B1

∇ ⋅ S* =
1

2μ0
∇ ⋅ (E*1 × B1) =

1
2μ0

B1 ⋅ (∇ × E*1 ) −
1

2μ0
E*1 ⋅ (∇ × B1)

∮ j Im (S) ⋅ ̂nds = ∫ ( jω1

2 ( 1
μ0

B*1 ⋅ B1 − ϵ0E1 ⋅ E*1 )

+
jωa

4
ϵ0gaγγc ⃗B 0 ⋅ (ã*E1 + ãE*1 )

−
1
4

(E1 ⋅ J*e1 − E*1 ⋅ Je1))) dτ

∇ ⋅ S =
1

2μ0
∇ ⋅ (E1 × B*1 ) =

1
2μ0

B*1 ⋅ (∇ × E1) −
1

2μ0
E1 ⋅ (∇ × B*1 )

∮ Re (S) ⋅ ̂nds = ∫ ( jωa

4
ϵ0gaγγc ⃗B 0 ⋅ (ã*E1 − ãE*1 ))

−
1
4

(E1 ⋅ J*e1 + E*1 ⋅ Je1)) dτ

Axion power inputCavity Power dissipation
∮ ⟨S⟩ ⋅ dS = −

1
4 ∫ (E1 ⋅ J*e1 + E*1 ⋅ Je1) dτ +

jωaϵ0gaγγ

4 ∫ c ⃗B 0 ⋅ (A*E1 − AE*1 ) dτ

Can show
Can show

Pd =
ωaϵ0

2Q ∫ E1 ⋅ E*1 dτ =
ωaU

Q

C1 =
( ∫ ⃗B 0 ⋅ Re(E1) dV)

2

B2
0V1 ∫ E1 ⋅ E*1 dV

P1 = ωaQU1 = g2
aγγ⟨a0⟩2ωaQ1ϵ0c2B2

0V1C1

= g2
aγγρaQ1ϵ0c5B2

0V1C1
1

ωa
,

known power output 
for a Sikivie Haloscope

Real part of Poynting Theorem
Reactive part of Poynting Theorem

= 0 on resonance

= 0 for closed system



COMPLEX MINKOWSKI POYNTING VECTOR FOR A DC AXION HALOSCOPE

∮ Re (SDB) ⋅ ̂nds =

∫ ( j(ω1 − ωa)
4

ϵ0gaγγc ⃗B 0 ⋅ (ãE*1 − ã*E1)

+
1
4

gaγγc ⃗B 0 ⋅ (ãJ*e1
+ ã*Je1

)

−
1
4

gaγγ
⃗J e0

⋅ (ã*cB1 + ãcB*1 )

−
1
4

(E1 ⋅ J*e1
+ E*1 ⋅ Je1

)) dV,

∮ j Im (SDB) ⋅ ̂nds = ∫ ( jω1

2 ( 1
μ0

B*1 ⋅ B1 − ϵ0E1 ⋅ E*1 )

+
j(ω1 + ωa)ϵ0gaγγ

4
c ⃗B 0 ⋅ (ãE*1 + ã*E1) +

1
4

gaγγc ⃗B 0 ⋅ (ãJ*e1
− ã*Je1

) +
1
4

gaγγ
⃗J e0

⋅ (ã*cB1 − ãcB*1 )

−
1
4

(E1 ⋅ J*e1
− E*1 ⋅ Je1

)) dV

Axion frequency tuned to resonance  : If Halocope is inside the magnet   ωa = ω1
1
4

gaγγ
⃗J e0 ⋅ (AcB*1 + A*cB1) = 0

Axion power inputCavity Power dissipation
∮ ⟨S⟩ ⋅ ̂nds = −

1
4 ∫ (E1 ⋅ J*e1 + E*1 ⋅ Je1) dτ +

1
4 ∫ c ⃗B 0 ⋅ (gaγγAJ*e1 + gaγγA*Je1) dτ

Pd =
1
4 ∫ (E1 ⋅ J*e1 + E*1 ⋅ Je1) Ps =

1
4 ∫ c ⃗B 0 ⋅ (gaγγ AJ*e1 + gaγγ A*Je1) dτ

Real part of Poynting Theorem Reactive part of Poynting Theorem

= 0 for closed system

Pd =
ωaϵ0

2Q ∫ E1 ⋅ E*1 dτ =
ωaU

Q

C1 =
( ∫ ⃗B 0 ⋅ Re(E1) dV)

2

B2
0V1 ∫ E1 ⋅ E*1 dV

P1 = ωaQU1 = g2
aγγ⟨a0⟩2ωaQ1ϵ0c2B2

0V1C1

= g2
aγγρaQ1ϵ0c5B2

0V1C1
1

ωa
,

= 0 on resonance

known power output 
for a Sikivie Haloscope



Capacitor under DC Magnetic Field: Quasi-static limit

Rc
+q̃1

⃗B 0 = B0 ̂z
Ã Ẽ1 B̃1 Ẽ1

B̃1

−q̃1
Rc

dc

Rc
rw

3

1

2

rw

Rc
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First order: Ignore fringing
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To First order: Real part of Poynting Theorem : Reactive part of Poynting Theorem= 0 ≠ 0

Sensitivity assuming the Modified Abraham Poynting Vector

Sensitivity assuming the Modified Minkowski Poynting Vector
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-> Creates Electromagnetic Energy at ωa

Electric Action of the Axion, a(t), mixing with ⃗B 0

γ0 γ1

⃗E 1a
A fictitious Electric Field


