Electro-Magnetic Simulation for TianLai Cylinder Array

Including Array Performance, Bandpass Response, and the Effects of Mutual Coupling

Shijie Sun

Outlines

1. Simulation method 2. One feed simulation and measurement **5. One feed + reflector simulation** 4. Feed array simulation 5. Feed array + reflector simulation **6.** Summary

1. Simulation method

model size

feed: ~21cm feed array: ~13 × 0.21 m $\rightarrow \sim 62 \times \lambda (1.4 GHz)$ cylinder reflector: 40 × 15m $\rightarrow \sim 200 \times \lambda (1.4 GHz)$

simulation software

simulation method

feed feed array

$\sim 1 \times \lambda (1.4 GHz)$

Ansys EM 2020R2(HFSS)

Finite Element Method

- FEBI: Finite Element + Integral Equation
- one feed + reflector \longrightarrow Hybrid: FEBI + PO(Physical Optics)
- feed array + reflector ---- Hybrid: FEBI + PO(Physical Optic)

- Previously designed and optimized by CETC54 institute and Tao Liu;
- Update feed model based on real feed and S11,S22 measurement result;

A more precision model after modification

S11,S22, Self coupling coefficient

S21,S12, Mutual coupling coefficient

Feed radiation pattern measurement in microwave chamber

In CETC54 Lab

0.70GHz

0.75GHz

0.80GHz

1.00GHz

1.10GHz

- Simulation results and measurement results are consistent with each other from 0.7GHz~1.4GHz
- Lack of side lobe measurement data;
- Measurement ranges from theta

 -135° ~ + 135° due to
 limitation of rotating
 platform

•	
	7

S parameters have similar characteristics compared with feed results

- appear standing wave structure in frequency domain;
- distance between radiation plate in feed and reflector is 4.8 meters.

' standing wave in 31MHz, corresponding to 9.68meters distance in free space;

Port1

Port2

• With higher frequency, the maximum side lobe becomes larger, and closer to main lobe.

• HPBW (half power beamwidth, or -3dB width) decrease along frequency

4. Feed array simulation

S4,4

S6,6

S8,8

- 31 feeds;
- No.1 feed in center position;
- two feeds distance: 38.75cm;
- Two sides of No.1 feed are symmetrical;
- Odd ports along X polar direction;
- Even ports along Y polar direction;

Self reflection coefficients of all ports are consistent with one feed simulation result

4. Feed array simulation

- $S_{N1,N2}$ indicates transmission coefficient between two ports;
- S_{Nodd},1 indicates transmission
 coefficient between other ports in X polar direction and port1;
 - $S_{N_{odd},2}$ indicates transmission coefficient between other ports in Y polar direction and port2;

 As the distance increases, the transmission coefficient decreases linearly

4. Feed array simulation

Radiation pattern of port31 H 5 plane and port32 E plane become asymmetry due to 0 Gain (dB) No.16 feed is in edge position -5 -10 0.7GHz -15 · 5 0 Gain (dB) -5 -10 -150 1 1 1 3c+03 6c+03 (mm)

plane and port32 E plane become asymmetry due to No.16 feed in edge position

theta, phi, gain in rectangular coordinate;

- Peak gain increases with frequency increases;
- Seems complex in narrow frequency band compare with one feed+cylinder result;

- Normalized peak gain in 0.7GHz-0.8GHz;
- Compare simulation results with auto correlation observation results;
- Data of B32 feed, in edge of Center cylinder; and A16 feed, in center of East cylinder;
- Higher frequency standing wave in data due to 15 meters feed cable (Jixia et al.2020).

- HPBW in X polar direction decreases exponentially with frequency;
- HPBW of odd ports are wider than even ports;
- Standing waves in frequency response;
- Consistent with observation result in 0.7GHz~0.8GHz;

- and feed array results;

- Standing wave exists in mutual coupling coefficients;
- As the distance increases, the transmission coefficient decreases ~linearly;
- Compared with feed array simulation results, all ports' mutual coupling coefficients increase.

- 1. A more precision feed model is constructed;
- 2. Standing wave in bandpass is due to reflection of cylinder reflector;
- 3. Adjacent feeds have a coupling coefficient of ~20dB;
- 4. Cylinder reflector increases mutual coupling effects;
- 5. Closer to the edge, the more asymmetry of side lobe pattern;
- 6. Simulated bandpass characteristics are in agreement with observation results.

6. Summary

