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Fast Machine Learning for Science Workshop was held 30 November — 3 December,
hosted virtually by Southern Methodist University
Website available here: https://indico.cern.ch/event/924283/

Workshop was interdisciplinary and attracted over 500 participants, talks on a wide
variety of scientific applications.

Workshop also included a hands-on tutorial session, to get people started on
applications of fast machine learning.

After the workshop, a community white paper has been prepared, and has been
submitted to a special issue of Frontiers in Al.
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In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to
accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains;
techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges
across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML
solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.

Comments: 66 pages, 13 figures, 5 tables

Subjects: Machine Learning (cs.LG); Hardware Architecture (cs.AR); Data Analysis, Statistics and Probability (physics.data-an); Instrumentation and Detectors (physics.ins-det)
Report number: FERMILAB-PUB-21-502-AD-E-SCD

Cite as: arXiv:2110.13041 [cs.LG]

(or arXiv:2110.13041v1 [cs.LG] for this version)

= Available on arXiv at the link: https://arxiv.org/abs/2110.13041

= Currently in the review process with Frontiers in Al
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Section 2:

Domain Examples

= Large section on Large Hadron Collider for: Example use cases are not
= Event Reconstruction comprehensive, but representative.

Event Simulation

Heterogeneous Computing
Real-Time Analysis at 40 MHz

Discussion included on tools used for
fast machine learning — his4ml and

Bringing ML to Detector Front-End conifer.

TensorFlow / TF Keras / PyTorch / ONNX
N

> a HLS project:
= h IS 4 l I I I e Xilinx Vivado HLS, Intel Quartus HLS,

Mentor Catapult HLS

Z
scikit-learn / XGBoost / TMVA

‘?:.k\ - /\,_Conifer -?

Figure 3. Two dedicated libraries for the conversion of Machine Learning algorithms into FPGA or
ASIC firmware: h1s4ml for deep neural network architectures and Coni fer for Boosted Decision Tree
architectures. Models from a wide range of open-source ML libraries are supported and may be converted
using three different high-level synthesis backends.




Section 2: Domain Examples

High-intensity Accelerators: Belle Il, Mu2e

Materials Discovery: Materials Synthesis, Scanning Probe Miscroscopy

Fermilab Accelerator Controls

Neutrino/Dark Matter Experiments: e.g. DUNE, MINERVA, Direct Detection Dark Matter
Electron-lon Collider

Gravitational Waves

Health: Biomedical Engineering and Health Monitoring

Cosmology

Plasma Physics

Wireless Networking and Edge Computing




Section 3: Data Representation

Domain Spatial | Point Cloud | Temporal Spatio- Multi/Hyper- Examples
Temporal spectral
LHC v vV v v - detector reconstruction
Belle-II/Mu2e v v - - = track reconstruction
Material Synthesis v - v v v high-speed plasma imaging
Accelerator Controls v = v - - beam sensors
Accelerator neutrino v v v v - detector reconstruction
Direct detection DM a4 a4 v v - energy signatures
EIC v v v v - detector reconstruction
Gravitational Waves v - v - - laser inference patterns
Biomedical engineering v - - v - cell and tissue images
Health Monitoring v - v v v physiological sensor data
Cosmology Va4 v vV v vV lensing/radiation maps
Plasma Physics v - v v - detector actuator signals
Wireless networking — — v — — electromagnetic spectrum

Types of data representation that are relevant for different domains.




Section 3: System Constraints

Table 2. Domains and practical constraints: systems are broadly classified as soft (software-programmable
computing devices: CPUs, GPUs, and TPUs) and custom (custom embedded computing devices: FPGAs

and ASICs)
Domain Event Rate Latency Systems Energy-constrained
Detection and Event Reconstruction No
LHC & intensity frontier HEP 10s Mhz ns-ms  Soft/custom
Nuclear physics 10s kHz ms soft
Dark matter & neutrino physics 10s MHz IS Soft/custom
Image Processing
Material synthesis 10s kHz ms Soft/custom
Scanning probe microscopy kHz ms Soft/custom
Electron microscopy MHz S Soft/custom
Biomedical engineering kHz ms Soft/custom  Yes (mobile settings)
Cosmology Hz S soft
Astrophysics kHz-MHz  ms-us Soft Yes (remote locations)
Signal Processing
Gravitational waves kHz ms Soft
Health monitoring kHz ms Custom Yes
Communications kHz ms Soft Yes (mobile settings)
Control Systems
Accelerator controls kHz ms—us  Soft/custom
Plasma physics kHz ms Soft
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Section 4: Efficient ML

= A discussion of strategies for improving ML

efficiency to enable lower latency.

= Designing new efficient ML architectures

= NN & hardware co-design
= Quantization

= Pruning and sparse inference
= Knowledge distillation

= Discussion of automation of the NN
architecture design process (Neural
Architecture Search).

Sensitivity: Flat vs. Sharp Local Minima

Inference Latency
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Figure 9. The illustration of hardware-aware quantization and pruning. A given NN model can be
compressed by using low precision quantization instead of single precision. The extreme case is to use 0-bit
quantization which is equivalent to removing/pruning the corresponding neurons. The goal of compression
is to find the best bit-precision setting for quantization/pruning to reduce model footprint/latency on a
target hardware with minimal generalization loss.
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Section 4: Hardware
Architecture

= Discussion of different computing architectures: CPU, GPU, FPGA/ASIC

= DPU: Deep learning processing unit, customized for CNNs. These can be implemented

on FPGAs or ASICs.

DPUs
CPUs GPUs
(ASICs or FPGA)
| | I
Scalar Vector-based SIMD Matrix- and Tensor- Spatial
processors processors based processors processors

Figure 10. Taxonomy of compute architectures, differentiating CPUs, GPUs and DPUs



Section 4: Hardwarelsof tware

Discussion of design, and of frameworks specifically created for the ML domain where they
automate the process of hardware generation for the end-user thus hiding the associated
design complexity of FPGAs and enabling them for the previously discussed end
applications.

his4ml
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Figure 12. FINN Compiler Flow




Section 4: Beyond-CMOS

Neuromorphic Hara

In this section, the most prominent
emerging technology proposals,
including those based on emerging
dense analog memory device circuits,
are grouped according to the targeted
low-level neuromorphic functionality.

Analog Vector-by-Matrix Multiplication
Stochastic Vector-by-Matrix Multiplication
Spiking Neuron and Synaptic Plasticity
Reservoir Computing

Hyperdimensional Computing / Associative
Memory

ware

Figure 13. Analog vector-by-matrix multiplication (VMM) in a crossbar circuit with adjustable crosspoint
devices. For clarity, the output signal is shown for just one column of the array, while sense amplifier
circuitry is not shown. Note that other VMM designs, e.g. utilizing duration of applied voltage pulses,
rather than their amplitudes, for encoding inputs/outputs, are now being actively explored — see, e.g., their
brief review in Ref. [551]




Conclusion

Reminder: Full document is available on arXiv for those interested:
https://arxiv.org/abs/2110.13041

White Paper is not comprehensive but does cover many example use cases of fast
machine learning, overlap between scientific domains, and a review of state-of-the-art
technology.

Connection to Snowmass process: Can summarize/borrow from most relevant parts of
full white paper (with an updated introduction more aligned to Snowmass process to be
submitted as a Snowmass white paper - Contact person: Javier Duarte

Thank you for your attention!
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