STT Prototyping Activities

R. Petti

University of South Carolina, Columbia SC, USA

SAND meeting October 26, 2021

BEAM TESTS OF VMM3 READOUT

◆ Setup with small (20cm × 20cm) straw tracker + VMM3a readout at RD51 testbeam:

- Two double layers XX+YY with straws staggered by half diameter;
- Independent tracking system with 3 GEM detectors ($\sigma \sim 50 \mu m$) equipped with VMM3 readout;
- SRS readout system with Felix based DAQ.

◆ Ongoing testbeam at H4 CERN beamline (21 October - 7 November 2021):

- High energy μ, π with $E \sim 160$ GeV;
- STT setup installed in H4 beamline on 20 October (JINR);
- Usable data taking from 25 October with all detectors working properly.

Comparison with data taken in August 2021 using the different NA64 readout.

TIMING CALIBRATION

Procedure to test and validate VMM3a ASICs used for 42,000 chips in ATLAS NSW

- ✦Automatized VMM3a test stand
- Optical system to read serial numbers of the VMM3a chips being tested
- VMMT: multi-functional test board for testing and characterization of VMM3 ASICs developed by Tomsk State University (Russia) for ATLAS

♦ All VMM3a chips procured by UofSC tested at CERN using ATLAS NSW procedure: average yield about 70% for best selection (green) for a total of 150 chips.

PREPARATION FOR PROTOTYPING

- ✦ Measurements of straw elongation and tension vs. internal gas pressure (GTU):
 - Straws with 4.9mm diameter, 12 μm & 20 μm walls, produced by ultrasonic welding;
 - Studied tension drop with increase of internal pressure starting from initial pre-tension.
- + FE analysis of deformations induced by gas pressure, wire and straw tension:
 - Removable lids giving access to gas manifolds and FE boards, gas tightness (O-rings, etc.);
 - Connection of individual straws to C-composite frame and related gas sealing;
 - Study interplay between internal overpressure and wire/straw tension.

✤ Design of the prototype & mockup:

- Prototype 1.2m × 0.8m in C-composite, based on design & parts as in full scale STT modules;
- Mockup 35cm × 35cm in plexiglass, for preliminary validation tests.

Procurement of components for the prototype:

- Finalized straw parameters: 4.9mm external diameter, 20 μm walls, COMET film (double AI?);
- Mockup frame to be machined in plexiglass (Hamburg/DESY);
- C-composite frame for prototype: evaluating vendors in USA, Italy, and India;
- Options for manufacturing 1,500 endplugs: machining, 3D printing, injection molding.

Backup slides

JINR built 7 detectors 1.2 m x 0.6 m for NA64 sent to CERN in August 6 detectors will be on beam from October 29

Test of 5m long straws for SHiP at the University of Hamburg

Test of 1.8m long straws for STT at Panjab University

Elongation of fixed tube based on pressure change

Tube elongation with weights with no pressure

Measurement of elongation and tension with straws 1.0 m long, 5 mm diameter

Straw numbers	Length	Diameter	Thickness	Elongation at 1 bar (relative)	Weight
1	1 m	5 mm	12 µm	0.66 mm	78.5 g
1	1 m	5 mm	20 µm	0.35 mm	56 g
1	0.5 m	5 mm	12 µm	0.276 mm	35 g
1	0.5 m	5 mm	20 µm	0.17 mm	44 g
400	1 m	5 mm	12 µm		31.4 kg
400	1 m	5 mm	20 µm		22.4 kg

Expected maximal elongation for 4m long straws ~2.6 mm similar maximal frame deformation expected with assembly based on pressurized straws

Otari Kemularia (GTU)

4

WIRING OF STRAWS

Consider a new wire support:

- "Twister" design used in ATLAS TRT can simplify wiring procedure;
- Wires can be replaced even after completion of module assembly;
- Increased mass & inefficiency (\sim 7mm long).

♦ Old design of wire support:

- Minimized mass & inefficiency (3.5mm long);
- Wires cannot be replaced after module assembly is completed & end-plugs are sealed by epoxy.

ATLAS "twister"

Old wire spacer

Roberto Petti

EXISTING PROTOTYPE

Prototype 50cm x 50cm tested at JINR with VMM3a readout FE boards from Mu2e Cathode Strip Chamber test stand (BNL)

Validation of VMM3a readout with the prototype at JINR: signals from cosmic rays and ⁵⁵Fe source with Ar/CO₂ 80/20 using FPGA-based DAQ readout with existing VMM3 firmware+software

Monitoring of gas gain with increased gas flow up to 2,000 times nominal (JINR)