

Muon Collider Simulation in org.lcsim: overview, status and plans

- •The mcdrcal00 detector in org.lcsim
- Documentation
- Data Samples

Hans Wenzel

Jan. 18th 2012

Documentation

Created Confluence page: https://confluence.slac.stanford.edu/display/MCPDS/Home Currently:

- Overview
- Event Generation
- Alex Timing studies

You can sign up here:

https://jira.slac.stanford.edu/signup/

The mcdrcal00 detector in ora.lcsim

5T solenoidal field, radius=3m Calorimeter dimensions: Rmin: 1.25 m Rmax: 2.96 m Length: 2x7.4 m

Detector description in CVS but can been found here (on detsim): /ilc/sid/wenzel/muoncolliderdata/detectordescriptions

The mcdrcal00 detector in org.lcsim

Calorimeter Properties for Barrel and Endcaps

NUM LAYERS	EM	Hadron	Muon
Material	BGO (PbF2)	BGO (PbF2)	Iron
Density {g/cm^3}	7.13	7.13	7.85
Cell size {cm^3}	1x1x2	2x2x5	10x10x10
Layers	10	30	22
Detector Depth {cm}	20	150	220
Radiation Length	1.1 cm	1.1 cm	1.76 cm
Nuclear Interaction Length	22.7 cm	22.7 cm	131.9 g/cm^2 16.8 cm

Caveats

Program

- Tungsten cone commented out-> showers developing in the cone required a lot of CPU --> Need sensitive detector that registers particles that enter but then kills them.
- No Material for coil included
- Jas3 can't display all calorimeter shapes used for mcdrcal00 (but we can see the hits)
- Not enough iron to return flux of 5T solenoidal field
- Simulation of DR (cerenkov photons) is very slow due to the use of the Geant 4 G4Cerenkov process. Calculating the number of produced in the optical calorimeter sensitive detector class will speed up the process significantly. Currently the datasets are without optical processes enabled.

Data samples

Fully simulated events on detsim (replacement of ilcsim and ilcsim2): /ilc/sid/wenzel/muoncolliderdata/slcio/bgr /ilc/sid/wenzel/muoncolliderdata/slcio/signal

Zp3TeVtoee.slcio Zptomumu_3TeV_mcdrcal00.slcio Non Accele time time energy weighted Entries : 273306478 Entries : X1.6⁶ 40 T Mean : 199.99 Mean : 35 1.4 Rms : 203.65 Rms : OutOfRange : 63739145 1.2 30 25 1.0 0.8-20 15 0.6 0.4 10 0.2-5-0.0-0+ 200 600 800 200 400 600 400 1,000 0 0

pathlength corrected time weighted by energy full range

pathlength corrected time weighted by energy

9

273306478

128.85

Acceleratory Acceleratory Anogram

Ζ'->μ⁺μ⁻

Hunon Accelerato Treverato Arogram

pathlength corrected time weighted by energy

Plan

- Implement sensitive detector that counts the cerenkov photons.
- Implement sensitive detector for the tungsten cone
- Generate single particle data samples.

• We need:

- a functional and 'realistic' detector description
- To add timing information to the calorimeter Hits
- To add Background events
- org.lcsim drivers to run the reconstruction and analysis
- collect data cards for physics processes of interest (defined benchmarks) + backgrounds thereof
- documentation to guide physicist through all the steps. Confluence might be a good place for that.

Status

- Get entire chain running at Fermilab (together with Alex Conway, YK student and Norman Graf)
 - Event generation (pythia)
 - Simulation (SLIC)
 - Event reconstruction (lcsim.org)
 - Analysis (jas3)
 - Documentation (confluence pages)
- •But: Detector description was not complete:
 - Had to create tracker description, steering file for digitization.
- Even bigger BUT: it's buggy simulation hangs for anything more complicated than single event files.

<u>15</u>

Program

NON Accel

Radiusvsz energy weighted

<u>16</u>

Plan

- Need a working detector model for the muon collider (Work with SLAC). Challenge is to deal with backgrounds while maintaining high precision (can it be done?). Needs detailed studies
- Calorimeter:
 - Dual readout (need to study how timing will affect the resolution after dual readout correction is applied)
 - Raja type: (digital sampling calorimeter with traveling time gate, software compensation)
- Tracker:
 - More like LHC than ILC, double or triple layers might be needed to help with pattern recognition. Need fast timing to reject background --> this will all come at a price (material budget)

17

 Once we have it: debug, biggest challenge will be to deal with the huge backgrounds and getting them into the simulation. (much more challenging than pile up at LHC and that was already difficult)

DRCalRoot: Geant 4 standalone application,

allows to do detailed tracing of optical photons.

Crystal size in x,y,y: 5 cm Nr. of cells in x,y,z: 40 Crystal Material : G4_BGO Crystal Density : 7.13 [g/cm3] Crystal interaction length: 22.6937 [cm] Crystal radiation length: 1.11801 [cm] Crystal total length (z,y,z): 200 [cm] # interaction length (z): 8.81301

(ignore material of silicon photo dets. total # of IA length: 0.0524555)

Physics list: (the infamous) QGSP_BERT No thresholds, no clustering

Customers: Giovanni, Anna, Mateo

