

4D trackers and precision timing

Valentina Cairo, Ryan Heller, Simone Mazza, Ariel Schwartzman **IF03 Solid State Detectors** November 11th, 2021

Fermilab U.S. DEPARTMENT OF Office of Science

4D trackers and precision timing

- White paper covering 4D trackers and precision timing - LOIs #25, #37, #39
- Proposed structure
 - Motivation for 4D tracking & requirements for future collider experiments
 - FCC, ILC, EIC, muon collider
 - Resolutions approaching 5-10 microns & 5-10 ps in most extreme cases
 - Layout considerations
 - Sensor technologies, current status, key challenges, and R&D roadmap • Advanced LGADs (AC-LGADs, TI-LGADs, DJ, DG..) achieve excellent spatial resolution already • Concentrate R&D effort on radiation hardness and sub 20 ps resolution (ultra thin sensors?) - Electronics: challenges of density & power consumption, roadmap for future.

Motivation for 4D tracking

 ATLAS & CMS constructing timing layers for HL-LHC - 30-50 ps resolution, but coarse spatial resolution: "Zeroth" example of 4D tracker

Motivation for 4D tracking

FCC-hh

- Need 10 um & 10 ps resolution in many layers
 - pattern recognition / track finding
 - PU rejection
- Extreme rad hardness requirements

• ILC

- Background rejection with modest timing ~ 1 ns (backscattered brems)
- ToF capability important for PID & LLP

Exp.	LHC	HL-LHC	FCC-hh	FCC-ee	CLIC 3 TeV
Parameter					
Fluence [n _{eq} /cm ² /y]	N x 10 ¹⁵	10 ¹⁶	10 ¹⁶ - 10 ¹⁷	<10 ¹⁰	<1011
Max. hit rate [s ⁻¹ cm ⁻²]	100 M	2-4 G****)	20 G	20 M ***)	240k
Surface inner tracker [m ²]	2	10	15	1	1
Surface outer tracker [m ²]	200	200	400	200	140
Material budget per detection layer [X ₀]	0.3% ^{*)} - 2%	0.1% ^{*)} -2%	1%	0.3%	0.2%
Pixel size inner layers [µm ²]	100x150- 50x400	~50x50	25x50	25x25	<~25x25
BC spacing [ns]	25	25	25	20-3400	0.5
Hit time resolution [ns]	<~25–1k ^{*)}	0.2**)-1k*)	~10-2	~1k ***)	~5

Strange-tagging with TOF; V. Cairo, A. Schwartzman

Motivation for 4D tracking

• EIC

- ToF application: 30 ps & 30 um resolution
 - Don't necessarily need timing in every layer.
- Roman pots / forward application:
 - improve proton pT resolution
 - 50 ps and ~100 um resolution
- Muon collider
 - Reject beam-induced background in tracker with timing ~50 ps

https://muoncollider.web.cern.ch/tracking-detector

E.g. ToF in ATHENA detector

Layout considerations & compromises

- Where can we make compromises to conserve resources (\$\$\$, cooling power, material budget, etc..)? Some examples:
 - EIC roman pots: Need good timing, but only moderate space resolution
 - ILC: Only modest time resolution for BG rejection
 - How many layers really need ps timing? For TOF PID, LLP searches.
 - Forward / central coverage?
 - Segmentation: driven by occupancy, or spatial resolution?
- Applications exist for technologies that only check a few of the boxes.

Not all applications require cutting-edge performance in both time and space.

Sensor technologies

- Many concepts to introduce fine segmentation
 - AC-LGADs, Trench-isolated LGADs, Deep Gain LGADs, Deep Junction LGADs

Many successful prototypes produced by HPK, FBK, BNL, others. Promising performance!

Ryan Heller 11/10/21

• LGADs: thin sensors with moderate gain (30 ps resolution, ~mm granularity)

AC-LGAD demonstrations

 AC-LGAD prototypes characterized at FNAL test beam, collaboration between FNAL, BNL, KEK, UCSC

Key sensor challenges

Improving time resolution: must go thinner!

Signal to noise ratio

- Improving radiation hardness (10¹⁷⁻¹⁸ neq/cm²)
- Thin sensors help: maintain gain & low depletion voltage to higher fluence
- What about susceptibility to single event burnout? (<u>R. Heller, RD50</u>)
- Other techniques: Deeper gain implants (DJ and DG-LGADs), carbon co-implant

<u>S. Mazza, LOI #25</u>

Electronics challenges

- 4D trackers place extreme demands on electronics
 - High bandwidth, low noise amplifier + high resolution TDC
 - Must fit in small area and use limited power
- HL-LHC LGAD chips (ETROC, ALTIROC):
 - 1-3 mW per channel, 1.3 mm pitch, 65 nm
 - Compare to RD53 (HL-LHC pixels): ~20 uW per channel, 50 micron pitch
- Significant R&D needed to keep power budget reasonable and shrink pitch!
 - SiGe readout for AC-LGADs
 - Monolithic LGADs

Conclusion

- 4D tracking capability will be a critical for all future collider detectors
 - Pattern recognition / PU rejection in dense environments
 - ToF capability for PID and LLPs
- Sensor technology already reaches specifications for some applications
 - Excellent spatial resolution achieved in various AC-LGAD designs
- Roadmap for future R&D:
 - Sensors:
 - Improve time resolution from 30 ps to 5-10 ps
 - Extend radiation hardness for FCC: 10¹⁷⁻¹⁸ neq/cm²
 - Electronics:
 - Shrink pitch and reduce power usage per channel

