
Token Authentication
Background

Mine Altunay, Dave Dykstra
October 6, 2021

FIFE Token Task Force Meeting

Why Switch to Tokens?
● The primary reason to switch to tokens is that X.509 proxies were never used

outside of the grid community
○ They were invented by Globus, and Globus has abandoned support for the libraries. OSG and a few

others have taken up support in the “Grid Community Toolkit” but OSG is dropping their support too
○ X.509 user certificates depended on support at the SSL/TLS layer that is only rarely used

● Oauth2/OpenID Connect (OIDC) JSON Web Tokens (JWTs) are in very wide-spread
use, and they are more secure because they enable much more fine grained control

○ There are a lot of existing tools that we can use with them, although we also often need some
customization

○ They’re much easier to use because they are sent at a higher layer, e.g. http Bearer header
○ Fine grained control does make them more complicated to use

● Note: X.509 host certificates are not going away, and they are an essential
component to securely verifying JWTs over https

2

Why use Vault?
● Oauth2/OIDC is designed for use in web browsers & web servers, but many of our

tools are based on command line
● After initial web browser approval, Oauth2 usually uses a “refresh token” that can be

indefinitely renewed, so it is has high security value and needs protection
● The available command line tool oidc-agent (from the science research community,

at KIT) is not user friendly enough at protecting refresh token
● We needed a server-based solution, analogous to MyProxy in our old architecture
● Hashicorp Vault is a very popular open source generic secret store server, that

already supports OIDC and Kerberos
○ Needed some slight additions, submitted as PRs
○ Very flexible plugin architecture, REST/JSON API, and flexible access policies
○ Issues its own tokens for very flexible access to particular paths in its filesystem-like space
○ Needed configurator (htvault-config), and a new command line client (htgettoken) to control the flows

3

Normal federated OIDC flow

4

Redirect with access
JWT & refresh token1

3,5

4

6

2

htgettoken with Vault initial OIDC flow

Redirect with access
JWT & refresh token

1

3,5

4

6

2

Access JWT &
vault token

7

poll3

5

Refresh Token
30-days

Access Token
1-hourVault

User Node

CILogon
Token IssuerVault Token

7-days

Kerberos ticket
7-days

Initial Authentication (Case 0)

1

4

 5

Access Token
1-hour

6
 3

 2

htgettoken

6

Refresh Token
30-days

Access Token
1-hour

Vault

User Node

CILogon
Token Issuer

Vault Token
7-days

Kerberos ticket
7-days

Credential Lifetimes and Storage Overview

7

Refresh Token
30-days

Access Token
1-hour (expired)

Vault

User Node

CILogon
Token Issuer

Vault Token
7-days

Kerberos ticket
7-days

Authentication with Vault Token (within 7 days, Access Token Expired, Case 1)

1

2

3

Access Token
1-hour (new)

4

Vault Token
7-days

Access Token
1-hour (new)

htgettoken

8

Refresh Token
30-days

Access Token
1-hour (expired)

Vault

User Node

CILogon Token
Issuer

Vault Token
7-days (expired)

Kerberos ticket
7-days

Authentication with Kerberos (Vault token and Access token both expired,
Case 2)

1

2

3

Access Token
1-hour (new)

4

Kerberos ticket
7-days

Access Token
1-hour (new)

Vault Token
7-days (new)

htgettoken

9

Authentication after Refresh Token Expires (A month of No Activity, Case 3)

● As long as a user keeps using htgettoken, it will keep renewing its Access
Token, Vault Token and the Refresh Token before expiring.

● If a user has no activity for a month, the Refresh Token expires.
● After the Refresh Token expires, the user must authenticate just like the initial

authentication Case 0.

10

htgettoken files

● htgettoken normally uses 3 files:
1. A “credkey” which is an index for the credential, a portion of the path in the vault “filesystem”

where the refresh token is stored.
■ Comes from the token issuer
■ Normally for fermilab it simply matches your user id
■ Stored in home directory when a new refresh token is issued, can be shared across

client machines, per issuer and per role
2. A vault token, stored in /tmp/vt_u$(id -u) by default

■ Not in home directory because it is sensitive for security, but not in per-session space so
it can be reused across login sessions

3. A bearer, or access token, stored in ${XDG_RUNTIME_DIR:-/tmp}/bt_u$(id -u) by default
■ Specified by WLCG Bearer Token Discovery standard
■ Defaults to $XDG_RUNTIME_DIR, managed by systemd, which goes away after user

completely logs out of a machine (but shared between multiple logins at once)

11

Example with htgettoken -v

$ env|grep HTG
HTGETTOKENOPTS=--web-open-command=xdg-open
$ htgettoken -v -a fermicloud543.fnal.gov -i dune
Attempting OIDC authentication with https://fermicloud543.fnal.gov:8200

Complete the authentication via web browser at:
https://cilogon.org/device/?user_code=ZJL-CP9-KZG

Running 'xdg-open' on the URL
Waiting for response in web browser
Storing vault token in /tmp/vt_u3382
Saving credkey to /nashome/d/dwd/.config/htgettoken/credkey-dune-default: dwd
Saving refresh token to https://fermicloud543.fnal.gov:8200
 at path secret/oauth-dune/creds/dwd:default
Getting bearer token from https://fermicloud543.fnal.gov:8200
 at path secret/oauth-dune/creds/dwd:default
Storing bearer token in /run/user/3382/bt_u3382

12

Example decode

$ httokendecode
{
 "wlcg.ver": "1.0",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "sub": "dwd@fnal.gov",
 "nbf": 1633465577,
 "scope": "storage.create:/dune/scratch/users/dwd compute.create compute.read
compute.cancel compute.modify storage.read:/dune",
 "iss": "https://cilogon.org/dune",
 "exp": 1633469182,
 "iat": 1633465582,
 "wlcg.groups": [

"/dune"
],
 "jti":
"https://cilogon.org/oauth2/4a5c03b2a93e4e118b27cb23c1e68a17?type=accessToken&
ts=1633465582430&version=v2.0&lifetime=3600000"
}

13

CILogon as our token issuer

● We have arranged with CILogon to be our token issuer
● FERRY has been updated to store data about our users in an LDAP server

that CILogon hosts, and CILogon uses that information to issue tokens
○ Lists which users are allowed with which VOs and Roles
○ FERRY defines “capabilitysets” to indicate which scopes to include for each VO and Role
○ Vault is configured with corresponding VOs and Roles and just asks for the right capabilityset,

and CILogon issues the token
● JWTs are verified by looking up well-known url under the “iss” claim, e.g.

○ https://cilogon.org/fermilab/.well-known/openid-configuration
● Under there is a lot of information about the issuer including public signing

keys

14

https://cilogon.org/fermilab/.well-known/openid-configuration

Support for “robot” (unattended) operation

● htgettoken supports use of robot kerberos credentials to get new vault
tokens
○ Robot kerberos credentials are long lived
○ Principals are in the form “user/purpose/machine.name”

■ “user” can also be a group login, for example “dunepro”
■ In fact, we have configured all our shared roles by default to store refresh tokens in

vault under the group name, but that can be overridden by FERRY
○ User (or authorized user for a group) does OIDC authentication once but specifies

htgettoken --credkey option matching Kerberos principal to store refresh token in
subpath under the user’s Vault secrets path
■ The same htgettoken command can be used with robot Kerberos credentials
■ This gets used instead of the credkey file

15

Managed Token Service

● Working with long-lived kerberos keytabs can be tricky, and they are high
value from a security perspective since they don’t expire

● For that reason, we are planning a FIFE Managed Token Service
analogous to the FIFE managed proxy service

● Will push access tokens to experiment machines, and possibly vault
tokens, and will push vault tokens to HTCondor

16

HTCondor integration

● htgettoken and Vault have been integrated into HTCondor
○ condor_submit can be configured to automatically invoke htgettoken as needed and

store a vault token in condor_credd
■ Vault token used by condor_credmon_vault to get new short-lived access tokens pushed to

jobs
■ Vault token is extra long, 4 weeks, in order to work with jobs that are queued for a long time

○ Corresponds to time of proxies stored in MyProxy
○ Submit file specifies issuer, optional role, and optionally can choose reduced audience

and/or scopes
■ May obtain more than one token for a job
■ Based on previous implementation of Oauth2 credential support

○ Vault token is stored with an extension indicating the VO & role, so can keep a variety
on same machine

○ Available in HTCondor’s builds of 9.0.6+ and 9.1.5+
■ Also available in all OSG builds of htcondor-9.0+

17

Token flow with HTCondor and Vault

Job Submission

Job Execution

Data Access

condor_schedd

condor_shadow

condor_startd

condor_starter

User’s job

Token Issuer

Data Server

User

Policy DB
= refresh tokensR A = access tokens

Identity Provider

A
A

A

Vault RA

V = vault tokens

A

V

V

18

condor_submit
condor_vault_storer

htgettoken

condor_credd
condor_credmon_vault

HTCondor configuration

● System admin:
○ Install condor-credmon-vault rpm and set for example:
 SEC_CREDENTIAL_GETTOKEN_OPTS = -a fermicloud543.fnal.gov

● User submit file for example:
use_oauth_services = dune
dune_oauth_permissions = storage.read:/ #optional
dune_oauth_resource = https://eos.cern.ch #optional

● Service names may include role, such as cms_production
● Handles may appended to store multiple variations for each service:

dune_oauth_permissions_readonly = storage.read:/
dune_oauth_permissions_write = storage.write:/

● All tokens end up in $_CONDOR_CREDS

19

Links

● WLCG Authorization Working Group client tools investigation report
○ https://github.com/WLCG-AuthZ-WG/client-tools

● Bearer token discovery:
○ https://github.com/WLCG-AuthZ-WG/bearer-token-discovery

● WLCG JWT profile
○ https://github.com/WLCG-AuthZ-WG/common-jwt-profile

● Vault & plugins
○ https://www.vaultproject.io/

○ https://github.com/hashicorp/vault-plugin-auth-jwt

○ https://github.com/puppetlabs/vault-plugin-secrets-oauthapp

● htvault-config: https://github.com/fermitools/htvault-config

● htgettoken: https://github.com/fermitools/htgettoken

● Htcondor with vault docs: https://htcondor-vault.readthedocs.io

● oidc-agent: https://indigo-dc.gitbook.io/oidc-agent/

20

https://github.com/WLCG-AuthZ-WG/client-tools
https://github.com/WLCG-AuthZ-WG/bearer-token-discovery
https://github.com/WLCG-AuthZ-WG/common-jwt-profile
https://www.vaultproject.io/
https://github.com/hashicorp/vault-plugin-auth-jwt
https://github.com/puppetlabs/vault-plugin-secrets-oauthapp
https://github.com/fermitools/htvault-config
https://github.com/fermitools/htgettoken
https://htcondor-vault.readthedocs.io/
https://indigo-dc.gitbook.io/oidc-agent/

