Token Authentication
Background

Mine Altun e Dykstra
Octobe 62021
FIFE Token Task Force Mee eting

Why Switch to Tokens?

The primary reason to switch to tokens is that X.509 proxies were never used

outside of the grid community

o They were invented by Globus, and Globus has abandoned support for the libraries. OSG and a few
others have taken up support in the “Grid Community Toolkit” but OSG is dropping their support too
o X.509 user certificates depended on support at the SSL/TLS layer that is only rarely used

Oauth2/OpenlD Connect (OIDC) JSON Web Tokens (JWTs) are in very wide-spread

use, and they are more secure because they enable much more fine grained control

o There are a lot of existing tools that we can use with them, although we also often need some
customization

o They’re much easier to use because they are sent at a higher layer, e.g. http Bearer header

o Fine grained control does make them more complicated to use

Note: X.509 host certificates are not going away, and they are an essential
component to securely verifying JWTs over https

Why use Vault?

Oauth2/0OIDC is designed for use in web browsers & web servers, but many of our
tools are based on command line

After initial web browser approval, Oauth2 usually uses a “refresh token” that can be
indefinitely renewed, so it is has high security value and needs protection

The available command line tool oidc-agent (from the science research community,
at KIT) is not user friendly enough at protecting refresh token

We needed a server-based solution, analogous to MyProxy in our old architecture
Hashicorp Vault is a very popular open source generic secret store server, that
already supports OIDC and Kerberos

@)

O
O
O

Needed some slight additions, submitted as PRs

Very flexible plugin architecture, REST/JSON API, and flexible access policies

Issues its own tokens for very flexible access to particular paths in its filesystem-like space

Needed configurator (htvault-config), and a new command line client (htgettoken) to control the flows

Normal federated OIDC flow

IN _L Server | Redirect with access

Identity
Provider

p

OpenlD
Connect
Provider

htgettoken with Vault initial OIDC flow

' User Browser

Vault client
htgettoken

1

—>
~3poll
7

Access JIWT &
vault token

Provider

e 6
Redirect with access

asncorp / JWT & refresh token

y

OpenlD
Connect |
Provider

Initial Authentication (Case 0)

/\ Access Token
Vault 1-hour
5 Refresh Token
30-days N
\¥/
3
6
ClLogon
Vault Token
2 s Token Issuer
Access Token
o o 1 Kerberos ticket
7-days
N~—_—
User Node

Credential Lifetimes and Storage Overview

Refresh Token
30-days

~

-

"

Access Token

1-hour

Kerberos ticket
7-days

Vault Token
7-days

~

)

User Node

N
S

ClLogon
Token Issuer

~

Authentication with Vault Token (within 7 days, Access Token Expired, Case 1)

3

Refresh Token
30-days

B

2

Vault Token
7-days

1-hour (new)

Access Token

N
S

Access Token
1-hour (new)

/ [htgettoken

J

User Node

\

Access Token

1-hour (expired)

Kerberos ticket
7-days

Vault Token
7-days

~

ClLogon
Token Issuer

)

~

Authentication with Kerberos (Vault token and Access token both expired,

Case 2)

Refresh Token
30-days

ClLogon Token

\ Kerberos ticket
2" T7-days

3 Issuer
Access Token /\
1-hour (new) ¥/

]

Vault Token
| 7-days (new)
Access Token
1-hour (new) w

a [htgettoken

J

User Node

Access Token

K1-hour (expired)

Kerberos ticket
7-days

Vault Token
7-days (expired)

/

Authentication after Refresh Token Expires (A month of No Activity, Case 3)

As long as a user keeps using htgettoken, it will keep renewing its Access
Token, Vault Token and the Refresh Token before expiring.

If a user has no activity for a month, the Refresh Token expires.

After the Refresh Token expires, the user must authenticate just like the initial
authentication Case 0.

10

htgettoken files

htgettoken normally uses 3 files:
1. Afcredkey” which is an index for the credential, a portion of the path in the vault “filesystem”
where the refresh token is stored.
m Comes from the token issuer
m Normally for fermilab it simply matches your user id
m Stored in home directory when a new refresh token is issued, can be shared across
client machines, per issuer and per role
2. Avault token, stored in /tmp/vt_u$(id -u) by default
m Not in home directory because it is sensitive for security, but not in per-session space so
it can be reused across login sessions
3. Abearer, or access token, stored in ${XDG_RUNTIME_DIR:-/tmp}/bt_u$(id -u) by default
m Specified by WLCG Bearer Token Discovery standard
m Defaults to $XDG_RUNTIME_DIR, managed by systemd, which goes away after user
completely logs out of a machine (but shared between multiple logins at once)

1

Example with htgettoken -v

$ env|grep HTG

HTGETTOKENOPTS=--web-open-command=xdg-open

$ htgettoken -v -a fermicloud543.fnal.gov -i dune

Attempting OIDC authentication with https://fermicloud543.fnal.gov:8200

Complete the authentication via web browser at:
https://cilogon.org/device/?user code=ZJL-CP9-KZG

Running 'xdg-open' on the URL

Waiting for response in web browser

Storing vault token in /tmp/vt u3382

Saving credkey to /nashome/d/dwd/.config/htgettoken/credkey-dune-default: dwd

Saving refresh token to https://fermicloud543.fnal.gov:8200
at path secret/oauth-dune/creds/dwd:default

Getting bearer token from https://fermicloud543.fnal.gov:8200
at path secret/oauth-dune/creds/dwd:default

Storing bearer token in /run/user/3382/bt u3382

12

Example decode

$ httokendecode

{

"wlcg.ver": "1.0",

"aud": "https://wlcg.cern.ch/jwt/vl/any",

"sub": "dwd@fnal.gov",

"nbf": 1633465577,

"scope": "storage.create:/dune/scratch/users/dwd compute.create compute.read
compute.cancel compute.modify storage.read:/dune",

"iss": "https://cilogon.org/dune",

"exp": 1633469182,

"iat": 1633465582,

"wlcg.groups": [

"/dune"

1,

w j ti w :
"https://cilogon.org/ocauth2/4a5c03b2a93e4ell18b27cb23cle68al7?type=accessTokené&
ts=1633465582430&version=v2.0&lifetime=3600000"

}

13

ClLogon as our token issuer

We have arranged with ClLogon to be our token issuer
FERRY has been updated to store data about our users in an LDAP server

that ClLogon hosts, and ClLogon uses that information to issue tokens
o Lists which users are allowed with which VOs and Roles
o FERRY defines “capabilitysets” to indicate which scopes to include for each VO and Role
o Vault is configured with corresponding VOs and Roles and just asks for the right capabilityset,
and ClLogon issues the token
JWTs are verified by looking up well-known url under the “iss” claim, e.g.
o https://cilogon.org/fermilab/.well-known/openid-configuration

Under there is a lot of information about the issuer including public signing
keys

14

https://cilogon.org/fermilab/.well-known/openid-configuration

Support for “robot” (unattended) operation

® htgettoken supports use of robot kerberos credentials to get new vault
tokens

O Robot kerberos credentials are long lived

O Principals are in the form “user/purpose/machine.name”
B “user” can also be a group login, for example “dunepro”

B In fact, we have configured all our shared roles by default to store refresh tokens in
vault under the group name, but that can be overridden by FERRY

O User (or authorized user for a group) does OIDC authentication once but specifies

htgettoken --credkey option matching Kerberos principal to store refresh token in
subpath under the user’s Vault secrets path
B The same htgettoken command can be used with robot Kerberos credentials

B This gets used instead of the credkey file

15

Managed Token Service

e \Working with long-lived kerberos keytabs can be tricky, and they are high
value from a security perspective since they don’t expire

e For that reason, we are planning a FIFE Managed Token Service
analogous to the FIFE managed proxy service

e Will push access tokens to experiment machines, and possibly vault
tokens, and will push vault tokens to HTCondor

16

HTCondor integration

® htgettoken and Vault have been integrated into HTCondor
o condor_submit can be configured to automatically invoke htgettoken as needed and
store a vault token in condor_credd
[| V%ult token used by condor_credmon_vault to get new short-lived access tokens pushed to
jobs
B Vault token is extra long, 4 weeks, in order to work with jobs that are queued for a long time
O Corresponds to time of proxies stored in MyProxy
o Submit file specifies issuer, optional role, and optionally can choose reduced audience
and/or scopes
B May obtain more than one token for a job
B Based on previous implementation of Oauth2 credential support
o Vault token is stored with an extension indicating the VO & role, so can keep a variety

on same machine
o Available in HTCondor’s builds of 9.0.6+ and 9.1.5+

B Also available in all OSG builds of htcondor-9.0+

17

Token flow with HTCondor and Vault

Q = vault tokens o = refresh tokens ° = access tokens

Policy DB

‘ Job Submission m M
condor_submit o 7
Identity Provider

condor_vault_storer
htgettoken

condor credd
condor_credmon_vault

Job Execution
Data Access

Q
-
18

HTCondor configuration

System admin:

o Install condor-credmon-vault rpm and set for example:

SEC CREDENTIAL GETTOKEN OPTS = -a fermicloud543.fnal.gov
User submit file for example:
use oauth services = dune
dune ocauth permissions = storage.read:/ #optional
dune ocauth resource = https://eos.cern.ch #optional

Service names may include role, such as cms _production
Handles may appended to store multiple variations for each service:

dune oauth permissions readonly
dune oauth permissions write =

All tokens end up in $ CONDOR _CREDS

= storage.read:/
storage.write:/

19

Links

WLCG Authorization Working Group client tools investigation report
O https://github.com/WLCG-AuthZ-WG/client-tools

Bearer token discovery:
O https://github.com/WLCG-AuthZ-WG/bearer-token-discovery

WLCG JWT profile
O https://qithub.com/WLCG-AuthZ-WG/common-jwt-profile

Vault & plugins

O https://www.vaultproject.io/
O https://github.com/hashicorp/vault-plugin-auth-jwt

O https://github.com/puppetlabs/vault-plugin-secrets-oauthapp

htvault-config: https://github.com/fermitools/htvault-config

htgettoken: https://github.com/fermitools/htgettoken

Htcondor with vault docs: https://htcondor-vault.readthedocs.io

oidc-agent: https://indigo-dc.gitbook.io/oidc-agent/

20

https://github.com/WLCG-AuthZ-WG/client-tools
https://github.com/WLCG-AuthZ-WG/bearer-token-discovery
https://github.com/WLCG-AuthZ-WG/common-jwt-profile
https://www.vaultproject.io/
https://github.com/hashicorp/vault-plugin-auth-jwt
https://github.com/puppetlabs/vault-plugin-secrets-oauthapp
https://github.com/fermitools/htvault-config
https://github.com/fermitools/htgettoken
https://htcondor-vault.readthedocs.io/
https://indigo-dc.gitbook.io/oidc-agent/

