Forward Physics Facility

CF-7 Day - Snowmass 2021
D. Soldin, J. Feng, F. Kling, M. H. Reno, J. Rojo

UNIVERSITY OF DELAWARE
BARTOL RESEARCH INSTITUTE

Overview

- Question: What opportunities are we currently missing from a lack of coverage of far-forward physics at the LHC?

- By far the largest flux of energetic light particles is in the far-forward direction (mesons, neutrinos, and maybe also dark photons, ALPs, mCPs, DM, ...)
- Proposal: Forward Physics Facility (FPF) at LHC (η д 7)
- Synergies between FPF physics and astroparticle physics!

FPF and CF-7
Large Hadron Collider (LHC)

Extensive Air Shower (EAS)

$$
\pi, K, D, v_{e}, v_{\mu}, v_{\tau}
$$

FAR FORWARD EXPERIMENTS AT LHC RUN 3

There are currently 3 detectors underway to exploit forward physics potential in the upcoming LHC Run 3

- Experiments shielded from interaction point by more than 100 m of rock
- Extremely low background!
- Ideal to measure rare processes, e.g. exotic physics, neutrino physics, ...

FAR FORWARD EXPERIMENTS AT LHC RUN 3

The FPF is proposed to extend this program into the HL-LHC era!

FPF Physics Potential

- Example:

FASER ν pilot detector

- Suitcase size, 4 weeks of data
- Costs: $\$ 0$ (recycled parts)
- 6 TeV -neutrino candidates [arXiv:2105.06197]

VS.
All previous collider experiments

- Building size, decades of data
- Costs: $\sim \$ 10^{9}$
- 0 TeV -neutrino candidates

FPF Physics Potential

- Example:

FASER ν pilot detector

- Suitcase size, 4 weeks of data
- Costs: $\$ 0$ (recycled parts)
- 6 TeV -neutrino candidates [arXiv:2105.06197]
- Years 2022-2024:
- $\sim 10000 \nu$ candidates expected ($\sim 10^{9}$ muons*)
- Forward Physics Facility:
- $\sim 10^{6} \nu$ candidates expected!

$$
\left(\sim 10^{12} \text { muons* } *\right)
$$

VS.
All previous collider experiments

- Building size, decades of data
- Costs: $\sim \$ 10^{9}$
- 0 TeV -neutrino candidates
- Obvious synergies with astroparticle physics, e.g. IceCube...
- Scientific exchange between FPF and astroparticle community

Timeline

- 3 dedicated FPF workshops:
- November 2020: https://indico.cern.ch/event/955956/
- May 2021: https://indico.cern.ch/event/1022352/
- October 2021: https://indico.cern.ch/event/1076733/
- Upcoming 4th FPF workshop:

Short Paper

- FPF Short Paper:

- First "real" paper on FPF
- About 80 authors
- About 75 pages
- Submitted to Physics Reports in September 2021
- Pre-print: arXiv:2109.10905
- Overview of ideas
- Reference for future work
- Basis for this White Paper...

The Forward Physics Facility Sites, Experiments, and Physics Potential

Luis A. Anchordoqui, ${ }^{1, *}$ Akitaka Ariga, ${ }^{2,3}$ Tomoko Ariga, ${ }^{4}$ Weidong Bai, ${ }^{5}$ Kincso Balazs, ${ }^{6}$ Brian Batell, Jamie Boyd, ${ }^{\text {, }}$ Joseph Bramante, ${ }^{\circ}$ Mario Campanelli, ${ }^{9}$ Adrian Carmona, ${ }^{10}$ rancesco G. Celiberto, ${ }^{111,12,13}$ Grigorios Chachamis, ${ }^{14}$ Matthew Citron, ${ }^{15}$ Giovanni De Lellis, ${ }^{16,17}$ Albert De Roeck, ${ }^{6}$ Hans Dembinski, ${ }^{18}$ Peter B. Denton, ${ }^{19}$ Antonia Di Crecsenzo, ${ }^{16,17,6}$ Milind V. Diwan, ${ }^{20}$ Liam Dougherty, ${ }^{21}$ Herbi K. Dreiner, ${ }^{22}$ Yong Du, ${ }^{23}$ Rikard Enberg, ${ }^{24}$ Yasaman Farzan, ${ }^{25}$ Jonathan L. Feng, ${ }^{26, \dagger}$ Max Fieg, ${ }^{26}$ Patrick Foldenauer, ${ }^{27}$ Saeid Foroughi-Abari, ${ }^{28}$ Alexander Friedland, ${ }^{29, *}$ Michael Fucilla, ${ }^{30,31}$ Jonathan Gall, ${ }^{32}$
Maria Vittoria Garzelli, $33, \ddagger$ Francesco Giuli, ${ }^{34}$ Victor P. Goncalves, ${ }^{35}$ Marco Guzzi, 36 Francis Halzen, ${ }^{37}$ Juan Carlos Helo, ${ }^{38,39}$ Christopher S. Hill, ${ }^{40}$ Ahmed Ismail 41 ,* Ameen Ismail, ${ }^{42}$ Richard Jacobsson, ${ }^{6}$ Sudip Jana, ${ }^{43}$ Yu Seon Jeong, ${ }^{44}$ Krzysztof Ameen 1 Ismail,
Jodłowski, ${ }^{45}$ Kevin J. Kelly, ${ }^{46}$ Felix Kling, ${ }^{29,47,8}$ Fnu Karan Kumar, ${ }^{20}$ Zhen Liu, ${ }^{48}$ Rafat Maciuta, ${ }^{49}$ Roshan Mammen Abraham, ${ }^{41}$ Julien Manshanden, ${ }^{33}$ Josh McFayden, ${ }^{50}$ Mohammed M. A. Mohammed, ${ }^{30,31}$ Pavel M. Nadolsky, ${ }^{51, *}$ Nobuchika Okada, ${ }^{52}$ John Osborne, ${ }^{6}$ Hidetoshi Otono, ${ }^{4}$ Vishvas Pandey, ${ }^{53,46, *}$ Alessandro Papa, ${ }^{30,31}$ Digesh Raut, ${ }^{54}$ Mary Hall Reno, ${ }^{55, *}$ Filippo Resnati, ${ }^{6}$ Adam Ritz, ${ }^{28}$ Juan Rojo, ${ }^{56}$

 Douglas Tuckler, ${ }^{67}$ Martin W. Winkler, ${ }^{68}$ Keping Xie, ${ }^{7}$ and Yue Zhang ${ }^{67}$

The Forward Physics Facility (FPF) is a proposal to create a cavern with the space and infrastructure to support a suite of far-forward experiments at the Large Hadron Collider during the High Luminosity era. Located along the beam collision axis and shielded from
the interaction point by at least 100 m of concrete and rock, the FPF will house experiments that will detect particles outside the acceptance of the existing large LHC experiments and will observe rare and exotic processes in an extremely low-background environment. In this will observe rare and exotic processes in an extremely low-background environment. In this
work, we summarize the current status of plans for the FPF, including recent progress in civil engineering in identifying promising sites for the FPF and the experiments currently envisioned to realize the FPF's physics potential. We then review the many Standard Model and new physics topics that will be advanced by the FPF, including searches for long-lived particles, probes of dark matter and dark sectors, high-statistics studies of TeV neutrinos of all three flavors, aspects of perturbative and non-perturbative QCD, and high-energy astroparticle physics.

Timeline

- Today:

Call for White Paper contributions!

- White Paper ($\sim 100-200$ pages):
- February 7, 2022: Final submission deadline for contributions
- February 21, 2022: Draft sent for community feedback
- March 5, 2022: Draft submitted to arXiv / Snowmass

White Paper

- 5 lead conveners:
- Jonathan Feng
- Felix Kling
- Juan Rojo
- Mary Hall Reno
- Dennis Soldin
- 5 topical sections:
- Facility / Experiments
- BSM Physics
- QCD
- Neutrino Physics
- Astroparticle Physics
- Additional topical co-conveners (most confirmed)
- Snowmass Slack channel: \#fff-whitepaper
- We will also contact potential contributors (based on Short Paper authors)
- Contributions: contact conveners / google form via email

White Paper Outline

White Paper Outline

White Paper Outline

III. The Facility and Experiments (J. Feng)

- Facility
- FASER 2
- FASER $\nu 2$
- AdvSND
- FLArE
- FORMOSA
- ...and more ideas!
I. Executive Summary

White Paper Outline

IV. Tools (All)

- Hadronic Generators
- Particle Transport Codes
- MC Tools for Neutrino Interactions
- MC Tools for BSM
I. Executive Summary
II. Introduction
III. The Facility and Experiments
A. Facility
B. FASER 2
B. FASER 2
C. FASER $\nu 2$
C. FASER $\nu 2$
D. AdvSND
E. FLArE
E. FLARE
F. FORMOSA

V. BSM Physics
A. Long-Lived Particle Decays at the FPF
C. Milli-charged Particles at the FPF
D. Others
VI. QCD
A. Forward charm production at high-energies in proton-proton collisions.
B. Forward neutrino production (non-charm) in proton-proton collisions.
C. Probing intrinsic charm at the FPF.
D BFKL /small-x physics at the (HL-)LHC
E. Neutrino interactions and cross-sections at the TeV scale (including benchmark
numbers).
F. Testing low-energy QCD with neutrino scattering at the LHC
G. Neutrino DIS: implications for proton PDFs
H. Neutrino DIS: implications for nuclear PDFs
I. Far-forward hadronic physics at the PPF
J. Event generators and tools for QCD physics at the FPF (including benchmark fluxes)
K. Obdortunities for FPF phvsics in the DA runs
L. Key observables for QCD measurements at the FPF
M. Instrumental considerations (e.g. coverage in rapidity) for $Q C D$ measurements
N. Interplay with QCD measurements at ATLAS, CMS, LHC
VII. Neutrino Physics
A. Neutrino Fluxes
B. Neutrino Cross Sections
C. BSM with Neutrinos
VIII. Astro-Particle Physics
A. Cosmic Ray Physics and the Muon Puzzle
B. Prompt Charm and Atmospheric Neutrino Fluxes
C. ... and other applications
IX. Conclusions

References

White Paper Outline

V. BSM Physics (F. Kling, TBC)

- Long-lived Particle Decays at the FPF
II. Introduction
III. The Facility and Experiments
A. Facility
B. FASER 2
B. FASER 2
C. FASER $\nu 2$
D.
C. FASER $\nu 2$
D. AdvSND
E. FLArE
F. FORMOSA
G. ... and more ideas
IV. Tools
A. Hadronic Generators
B. Particle Transport Codes
C. MC Tools for Neutrino Interactions
- Milli-charged Particles at the FPF
- Others...
V. BSM Physics
A. Long-Lived Particle Decays at the FPF
B. Dark Matter Scattering at the FPF
C. Milli-charged Particles at the FPF

VI. QCD

A. Forward charm production at high-energies in proton-proton collisions.
A. Forward charm production at high-energies in proton-proton collisions.
B. Forward neutrino production (non-charm) in proton-proton collisions.
C. Probing intrinsic charm at the FPF.
D BFKL /small-x physics at the (HL-)LHC
E. Neutrino interactions and cross-sections at the TeV scale (including benchmark
numbers). Cl .
F. Testing low-energy QCD with neutrino scattering at the LHC
G. Neutrino DIS: implications for proton PDFs
H. Neutrino DIS: implications for nuclear PDFs
I. Far-forward hadronic physics at the FPF
J. Event generators and tools for QCD physics at the FPF (including benchmark fuxes)
K. Ondortunities for FPF ohvsics in the DA runs
L. Key observables for QCD measurements at the FPF
M. Instrumental considerations (e.g. coverage in rapidity) for QCD measurements
N. Interplay with QCD measurements at ATLAS, CMS, LHCb
VII. Neutrino Physics
A. Neutrino Fluxes
B. Neutrino Cross Sections
C. BSM with Neutrinos
VIII. Astro-Particle Physics
A. Cosmic Ray Physics and the Muon Puzzle
B. Prompt Charm and Atmospheric Neutrino Fluxes
C. ... and other applications
IX. Conclusions

References

White Paper Outline

VI. QCD (J. Rojo, TBC)

- Forward charm production
- Forward neutrino production (non-charm)
- BFKL/small-x physics
- Neutrino interactions and cross-sections at TeV
- Testing low-energy QCD with neutrino scattering
- Neutrino DIS: implications for proton/nuclear PDFs
- Far-forward hadronic physics
- Opportunities for FPF physics in the pA runs
- Key observables for QCD measurements at FPF
-

I. Executive Summary
II. Introduction
III. The Facility and Experiments
A. Facility
B. FASER 2
B. FASER 2 2
C. FASER 2
C. FASER $\nu 2$
E. FLArE
F. FORMOSA
G. ... and more ideas
IV. Tools
A. Hadronic Generators
B. Particle Transport Codes
C. MC Tools for Neutrino Interactions
D. MC Tools for BSM
V. BSM Physics
A. Long-Lived
A. Long-Lived Particle Decays at the FPF
C. Milli-charged Particles at the FPF

VI. OCD

B. Forward charm production at high-energies in proton-proton collisions.
B. Forward neutrino production (non-charm) in proton-proton collisions.
C. Probing intrinsic charm at the FPF.
D. BFKL/small-x physics at the (HL-LHC
E. Neutrino interactions and cross-sections at the TeV scale (including benchmark
numbers).
F. Testing low-energy QCD with neutrino scattering at the LHC
G. Neutrino DIS: implications for proton PDFs
H. Neutrino DIS: implications for nuclear PDF
I. Far-forward hadronic physics at the FPF
J. Event generators and tools for QCD physics at the FPF (including benchmark fluxes) 6
K. ODDortunities for FPF dhvsics in the DA runs
L. Key observables for QCD measurements at the FPF
M. Instrumental considerations (e.g. coverage in rapidity) for QCD measurements
VII. Neutrino Physics
B. Neutrino Cross Sections
C. BSM with Neutrinos
VIII. Astro-Particle Physics
A. Cosmic Ray Physics and the Muon Puzzle
A. Cosmic Ray Physics and the Muon Puzzle
B. Prompt Charm and Atmospheric Neutrino Fluxes
C.. and other applications
C. ... and other applications
IX. Conclusions

References

White Paper Outline

VII. Neutrino Physics (H. Reno, TBC)

- Neutrino fluxes
- Neutrino cross sections
- BSM physics with neutrinos
I. Executive Summary
II. Introduction
III. The Facility and Experiments
A. Facility
B. FASER 2
B. FASER 2
C. FASER ν
D.
D. AdvSND
E. FLArE
F. FORMOSA
G. ... and more ideas
IV. Tools
A. Hadronic Generators
B. Particle Transport Codes
C. MC Tools for Neutrino Interactions
D. MC Tools for BSM
V. BSM Physics
A. Long-Lived Particle Decays at the FPF
B. Dark Matter Scattering at the FPF
C. Milli-charged Particles at the FPF
D. Others
vi. QCD
A. Forward charm production at high-energies in proton-proton collisions.
B. Forward neutrino production (non-charm) in proton-proton collisions.
C. Probing intrinsic charm at the FPF.
D. BFKL/small-x physics at the (HL--LHC
E. Neutrino interactions and cross-sections at the TeV scale (including benchmark
E. Neutrino in
numbers).
F. Testing low-energy QCD with neutrino scattering at the LHC
G. Neutrino DIS: implications for proton PDFs
H. Neutrino DIS: implications for nuclear PDFs
I. Far-forward hadronic physics at the FPF
J. Event generators and tools for QCD physics at the FPF (including benchmark fluxes) K. Ondortunities for FPF physics in the DA runs
L. Key observables for QCD measurements at the FPF
M. Instrumental considerations (e.g. coverage in rapidity) for QCD measurements
VII. Neutrino Physiss
A. Neutrino Fluxes
A. Neutrino Fluxes
B. Neutrino Cross Se
C. BSM with Neutrinos
VIII. Astro-Particle Physics
A. Cosmic Ray Physics and the Muon Puzzle
A. Cosmic Ray Physics and the Muon Puzzle
B. Prompt Charm and Atmospheric Neutrino Fluxes
C. ... and other applications
IX. Conclusions

White Paper Outline

VIII. Astroparticle Physics (D. Soldin, L. Anchordoqui)

- Cosmic ray physics
- The Muon Puzzle
- Atmospheric neutrino fluxes
- Other applications...
I. Executive Summary
II. Introduction
III. The Facility and Experiments
A. Facility
B. FASER 2
B. FASER 2 2
C. FASER 2
C. FASER $\nu 2$
D. AdvSND
E. FLArE
F. FORMOSA
G. ... and more ideas
IV. Tools
A. Hadronic Generators
B. Particle Transport Codes
C. MC Tools for Neutrino Interactions
D. MC Tools for BSM
V. BSM Physics
A. Long-Lived
A. Long-Lived Particle Decays at the FPF
B. Dark Matter Scattering at the FPF
B. Dark Matter Scattering at the FPF
C. Milli-charged Particles at the FPF
D. Others
VI. QCD
A. Forward charm production at high-energies in proton-proton collisions.
B. Forward neutrino production (non-charm) in proton-proton collisions.
C. Probing intrinsic charmaction (none FPF.
D. BFKL/small-x physics at the (HL-)LHC
numbers).
F. Testing low-energy QCD with neutrino scattering at the LHC
G. Neutrino DIS: implications for proton PDFs
H. Neutrino DIS: implications for nuclear PDFs
I. Far-forward hadronic physics at the FPF
J. Event generators and tools for QCD physics at the FPF (including benchmark fluxes)
K. OdDortunities for FPF phvsics in the DA runs
L. Key observables for QCD measurements at the FPF
N. Interplay wit considerations (e.g. coverage in rapidity) for QCD measurements
N. Interplay with QCD measurements at ATLAS, CMS, LHCb
VII. Neutrino Physics
A. Neutrino Fluxes
B. Neutrino Cross Sect
-

III. Astro-Particle Physics
A. Cosmic Ray Physics and the Muon Puzzle
B. Prompt Charm and Atmospheric Neutrino Fluxes
C. ... and other applications
-

VIII. Astroparticle Physics

Many contributions to FPF workshops / Short Paper

- Atmospheric neutrino fluxes (I. Sarcevic, M.V. Garzelli, F. Halzen, D. Soldin)
- Neutrino MC generators (H. Reno, A. Garcia, V. Pandey, L. Pickering, U. Mosel, P. Sala, J. Sobczyk, ...)
- Hadronic MC generators (T. Pierog, S. Ostapchenko, F. Riehn, A. Fedynitch, J. Soriano, L. Anchordoqui, R. Engel)
- Atmospheric muon fluxes (H. Dembinski, D. Soldin)

White Paper Outline

Synergies

Topical overlap with other Snowmass White Papers:

- "Ultra-High-Energy Cosmic Rays" (see F. Sarazin's talk) - Synergies between UHECR and FPF
- "Event Generators for High-Energy Physics Experiments"
- Common hadronic / neutrino event generators
- Others, e.g. neutrino White Paper?

Coordination required! (D. Soldin, S. Hoeche, ...?)
Introdive Summa
E. FLArE
F. FORMOSA
G. ... and more ideas
IV. Tools
A. Hadronic Generators
B. Particle Transport Codes
C. MC Tools for Neutrino Interactions
MC Tools for BS
V. BSM Physics
A. Long-Lived Particle Decays at the FPF
B. Dark Matter Scattering a
C. Milli-charged Particles at the FPF
D. Others
VI. QCD
A. Forward charm production at high-energies in proton-proton collisions.
B. Forward neutrino production (non-charm) in proton-proton collisions.
C. Probing intrinsic charm at the FPF.
D BFKL /small-x physics at the (HL-)LHC
E. Neutrino interactions and cross-sections at the TeV scale (including benchmark
numbers).
F. Testing low-energy QCD with neutrino scattering at the LHC
G. Neutrino DIS: implications for proton PDFs
H. Neutrino DIS: implications for nuclear PDFs
I. Far-forward hadronic physics at the FPF
J. Event generators and tools for QCD physics at the FPF (including benchmark fluxes)
K. Oboortunties for FPF ohvsics in the DA runs
L. Key observables for QCD measurements at the FPF
N. Interplay with QCD measurements at ATLAS, CMS, LHCb
VII. Neutrino Physics
A. Neutrino Fluxes
C. BSM with Neutrinos
VIII. Astro-Particle Physics
A. Cosmic Ray Physics and the Muon Puzzle
B. Prompt Charm and Atmospheric Neutrino Fluxes
IX. Conclusions
References

Status \& Outlook

- All contributions very welcome!

Please contact:

- Jonathan Feng: jlf@uci.edu
- Felix Kling:
- Mary Hall Reno:
flxkling@gmail.com
mary-hall-reno@uiowa.edu
- Juan Rojo: j.rojo@vu.nl
- Dennis Soldin: soldin@udel.edu
- Most topical co-conveners confirmed
- We will reach out to potential contributors asap
- 4th FPF Workshop: January 31 - February 1, 2022
- Deadline for contributions: February 7, 2022

