
1

ParticleID and other MicroBooNE
MCC9 Updates

Larsoft Coordination Meeting
Nov. 2, 20211

H. Greenlee

2

Outline

● Historical overview
● ParticleID update
● Other MCC9 updates
● Requests and proposals

3

Historical Overview

● Original presentation for proposed anab::ParticleID update
(breaking change) was made by Adam Lister and Kirsty Duffy in
July 17, 2018 larsoft coordination meeting (link to agenda).

● Second presentaiton on anab::ParticleID update was made in Jan.
15, 2019 larsoft coordination meeting (link to agenda).
– Agreed to in principle, pending implementation of ioread rule.

● MicroBooNE forked MCC9 off of larsoft v08_05_00 (Jan. 16,
2021).
– ParticleID was eventually merged in MCC9 fork.
– ParticleID was never merged in develop branch or integration release

because of lack of ioread rule … until now.

https://indico.fnal.gov/event/17640/
https://indico.fnal.gov/event/19498/

4

Old anab::ParticleID Class

● The old (integration release) anab::ParticleID class is hard-wired to
store values from a fixed set of particle id algorithms.

 class ParticleID{
 public:

 ParticleID();

 int fPdg; ///< determined particle ID
 int fNdf; ///< ndf for chi2 test
 double fMinChi2; ///< Minimum reduced chi2
 double fDeltaChi2; ///< difference between two lowest reduced chi2's
 double fChi2Proton; ///< reduced chi2 using proton template
 double fChi2Kaon; ///< reduced chi2 using kaon template
 double fChi2Pion; ///< reduced chi2 using pion template
 double fChi2Muon; ///< reduced chi2 using muon template
 double fMissingE; ///< missing energy from dead wires for contained particle
 double fMissingEavg; ///< missing energy from dead wires using average dEdx
 double fPIDA; ///< PID developed by Bruce Baller
 geo::PlaneID fPlaneID;

5

New anab::ParticleID Class

● The proposed new (and MCC9) anab::ParticleID class holds an
arbitrary size collection of algorithm structs.

 class ParticleID{
 public:

 ParticleID();

 std::vector<sParticleIDAlgScores> fParticleIDAlgScores;
 ///< Vector of structs to hold outputs from generic PID algorithms

6

Particle ID Algorithm StructParticle ID Algorithm Struct
struct sParticleIDAlgScores { ///< determined particle ID
 std::string fAlgName;
 ///< Algorithm name (to be defined by experiment). Set to "AlgNameNotSet" by default.
 kVariableType fVariableType;
 ///< Variable type enum: defined in ParticleID_VariableTypeEnums.h. Set to kNotSet by default.
 kTrackDir fTrackDir;
 ///< Track direction enum: defined in ParticleID_VariableTypeEnums.h. Set to kNoDirection by
 default.
 int fNdf;
 ///< Number of degrees of freedom used by algorithm, if applicable. Set to -9999 by default.
 int fAssumedPdg;
 ///< PDG of particle hypothesis assumed by algorithm, if applicable. Set to 0 by default.
 float fValue; ///< Result of Particle ID algorithm/test
 std::bitset<8> fPlaneMask;
 ///< Bitset for PlaneID used by algorithm, allowing for multiple planes and up to 8 total
 planes. Set to all 0s by default. Convention for bitset is that fPlaneMask[0] (i.e. bit 0)
 represents the collection plane, and then other planes work outwards from there.

 sParticleIDAlgScores(){
 fAlgName = "AlgNameNotSet";
 fVariableType = kNotSet;
 fTrackDir = kNoDirection;
 fAssumedPdg = 0;
 fNdf = -9999;
 fValue = -9999.;
 // fPlaneMask will use default constructor: sets all values to 0
 }
};

7

Particle ID Algorithm Struct

● Key elements.
– Algorithm name.
– Value.
– Plane mask.

Particle ID Algorithm Struct
struct sParticleIDAlgScores { ///< determined particle ID
 std::string fAlgName;
 ///< Algorithm name (to be defined by experiment). Set to "AlgNameNotSet" by default.
 kVariableType fVariableType;
 ///< Variable type enum: defined in ParticleID_VariableTypeEnums.h. Set to kNotSet by default.
 kTrackDir fTrackDir;
 ///< Track direction enum: defined in ParticleID_VariableTypeEnums.h. Set to kNoDirection by
 default.
 int fNdf;
 ///< Number of degrees of freedom used by algorithm, if applicable. Set to -9999 by default.
 int fAssumedPdg;
 ///< PDG of particle hypothesis assumed by algorithm, if applicable. Set to 0 by default.
 float fValue; ///< Result of Particle ID algorithm/test
 std::bitset<8> fPlaneMask;
 ///< Bitset for PlaneID used by algorithm, allowing for multiple planes and up to 8 total
 planes. Set to all 0s by default. Convention for bitset is that fPlaneMask[0] (i.e. bit 0)
 represents the collection plane, and then other planes work outwards from there.

 sParticleIDAlgScores(){
 fAlgName = "AlgNameNotSet";
 fVariableType = kNotSet;
 fTrackDir = kNoDirection;
 fAssumedPdg = 0;
 fNdf = -9999;
 fValue = -9999.;
 // fPlaneMask will use default constructor: sets all values to 0
 }
};

8

Comparison of New vs. Old anab::ParticleID

● Advantages.
– Extensible.

● New particle id algorithms can be added without modifying the
anab::ParticleID class.

– Possibility of having particle id algorithms based on multiple planes.
● Disadvantages.

– Assumes one TPC.
● No cryostat id or tpc id.

9

The I/O Rule Saga

● The reason why the anab::ParticleID update was never merged into
the develop branch is lack of working ioread rule.
– Originally, it was not possible to create an ioread rule due to a root

bug (lack of support for bitset template class).
– The original root bug (if it existed) has long since been fixed.
– A second issue was inability to read old geo::PlaneID.

● Second issue is now solved (worked around).

10

How Root I/O Rules Work

● When reading a class using an ioread rule, root presents you with
two versions of the object being read.
– First version matches compiled in class.

● Available as correct type pointer (T*) or reference (T&).
– Class does not need to derive from TObject.

● Layout matches global root dictionary.
● Normal automatic schema evolution rules apply.

– Second version is a reconstituted version of object read from disk,
based on dictionary stored in disk file.

● Available only as TObject*.
● No programmatic access to class data members (can't downcast).
● Class layout specified using object-specific dictionary (disk dictionary).

– Task of ioread rule is to grab data from second object and update first
object.

11

The geo::PlaneID I/O Rule Problem

● When reading an old version of anab::ParticleID from disk, second
(TObject*) version contians an embedded geo::PlaneID object that
needs to be unpacked in order to correctly set the plane mask in the
new version of anab::ParticleID.
– It has been observed that the geo::PlaneID object embedded in the

reconstituted disk version of the object presented to the ioread rule is
always default-constructed (invalid).

● Possibly because of a problem with disk-resident class dictionary.
● Problem of extracting old geo::PlaneID from disk TObject was never

solved.
● Nevertheless, the geo::PlaneID is actually in the data, because it can be

read correctly using normal root I/O (without schema evolution).

12

Solving the I/O Rule Problem

● The solution of how to read the geo::PlaneID from old objects is to
add a geo::PlaneID data member back in class anab::ParticleID
(originally suggested by Philippe Canal).

– Added data member must have type geo::PlaneID, and must have
name fPlaneID to trigger default schema evolution.

– Root's default schema evolution correctly fills fPlaneID data mamber
in first object, even if class version and layout has changed.

– Adds a place to store one cryostat id and tpc id in the bargain.
– Other data members (than geo::PlaneID) are able to be read from

disk TObject.
– Updated ioread rule adds nine algorithm structs to anab::ParticleID,

corresponding to nine atomic values in old anab:;ParticleID.

 class ParticleID{
 private:

 std::vector<sParticleIDAlgScores> fParticleIDAlgScores;
 ///< Vector of structs to hold outputs from generic PID algorithms
 geo::PlaneID fPlaneID; ///< Plane id.

13

Larsoft anab::ParticleID Dependencies

● lardataobj.

– ParticleID class.
– ParticleID enum header (added).
– classes_def.xml (ioread rule).

● lardata

– DumpParticleIDs_module.cc
● larreco

– KalmanFilterFitTrackMaker_tool.cc (pdg accessor).
● lareventdisplay

– AnalysisBaseDrawer.cxx (commented out).
● larana

– Chi2PIDAlg algorithm class.
– Chi2ParticleID_module.cc

14

Larsoft Merge Branches

● Larsoft anab::ParticleID merge branches available in
github.com/uboone.
– lardataobj: greenlee_mcc9_pid
– lardata: greenlee_mcc9_pid
– larreco: greenlee_mcc9_pid
– lareventdisplay: greenlee_mcc9_pid
– larana: greenlee_mcc9_pid

● Based on revisions cherry-picked from MCC9 branches, originally
based on merge branches supplied by authors Kirsty Duffy and
Adam Lister.
– Updated to be merge-compatible and buildable in recent integration

releases (tested up to v09_34_00).

15

Experiment anab::ParticleID Dependencies

● There are known anab::ParticleID dependencies in many
experiment-specific packages.
– Many of these dependencies are related to experiment-specific

versions of Analysis Tree ntuples.
● The original authors Kirsty Duffy and Adam Lister supplied merge

branches with experiment-specific updates for the following
packages.
– argoneutcode: feature/kduffy_updatePIDdataprod
– dunetpc: feature/kduffy_updatePIDdataprod
– icaruscode: feature/kduffy_updatePIDdataprod
– lariatsoft: feature/kduffy_updatePIDdataprod
– sbndcode: feature/kduffy_updatePIDdataprod

16

Experiment anab::ParticleID Dependencies II

● Recommended way to merge experiment-specific branches to
avoid conflicts.
– git merge -X ignore-all-space <remote>/kduffy_updatePIDdataprod

● Additional caveats.
– Lariatsoft appears to be unmaintained now.
– Package sbncode has anab::ParticleID dependencies, but no existing

merge branch.
– Some experiment repositories have migrated to github. Merge

branch may or may not have been migrated from redmine.
– Experiment branches not fully tested.

17

Additional MCC9 Updates -
MCS Fitter

● Author Giuseppe Cerati.
● Larreco updates:

– TrajectoryMCSFitter algorithm class.
– mcsfitproducer.fcl
– MCSFitProducer_module.cc not updated.

● Larreco merge branch: greenlee_mcc9_mcs

18

Giuseppe Cerati

19

Giuseppe Cerati

20

Additional MCC9 Updates -
Pandora Event Building

● Authors Andy Smith and Wouter van de PontSeele.
● Larpandora updates:

– Updates limited to directory larpandora/LArPandoreEventBuiding.
– CollectionMerging_module.cc removed.
– CollectionSplitting_module.cc modified.
– LArPandoraExternalEventBuilding_module.cc modified.
– Associated tools and fcl files added and modified.

● Larpandora merge branch: greenlee_mcc9_event_building
● Event building updates were designed to be non-breaking for non-

MicroBooNE experiments at the time they were originally
developed (around Feb. 2019).

21

What MicroBooNE is Requesting

● We would like there to be a larsoft test build that incorporates the
branches mentioned on the previous slides (repeated below)
pertaining to ParticleID and other MCC9 updates.

● Branches summary.
– lardataobj: greenlee_mcc9_pid
– lardata: greenlee_mcc9_pid
– larrecoj: greenlee_mcc9_pid
– lareventdisplay: greenlee_mcc9_pid
– larana: greenlee_mcc9_pid
– larreco: greenlee_mcc9_mcs
– larpandora: greenlee_mcc9_event_building

● All branches available in github.com/uboone.

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

