
Cetmodules 2: overview, highlights, and
implications for UPS to Spack migration

Chris Green, FNAL

LArSoft Coordination Meeting, 2021-11-02



Recap

Quick recap:

Developing a long term replacement for our current UPS-based ecosystem with wide

applicability across HEP.

Spack / cetmodules / SpackDev / BuildCache vs UPS & ssibuildshims / cetbuildtools /

MRB / SciSoft.

LArSoft updated to use cetbuildtools 8 (see presentations from 2021-09-21).

2/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration

https://indico.fnal.gov/event/51092/


Cetmodules 2 vs Cetbuildtools 8

ªWhat’s the difference between building with Cetbuildtool 8 and building for

Cetmodules 2?º

Short answer: ªNot very much at all, really.º

Long answer: ªPretty much everything, really.º

Let me explain. . .

3/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



ªNot very much at all, reallyº

From Using cetbuildtools 8 and mrb 5:
ªcetbuildtools 8 is a wrapper around cetmodules 2 with increased compatibility and

fewer deprecation warnings.º

If all one did was change ªcetbuildtoolsº to ªcetmodulesº in ªCMakeLists.txtº and

ªups/product_depsºÐwith corresponding version changes where appropriateÐyour

package should still build, install, and be usable by dependents using either

Cetbuildtools 8 or Cetmodules 2 without alteration . . .

. . . albeit with (probably many) more deprecation warnings than before.

4/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration

https://indico.fnal.gov/event/51092/contributions/223976/attachments/147413/188910/Mrb5Cetbuildtools8_2021-09-21.pdf


ªPretty much everything, reallyº

You now have the power and flexibility to:

improve build times for your own and dependent packages, and avoid unnecessary

transitive dependencies

reduce library size and memory footprint

improve code correctness and safety by eliminating ODR violations caused by use of

plugin services and tools

eliminate the need to use include_directories() or

target_include_directories() for direct or transitive dependencies

5/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



ªPretty much everything, reallyº

eliminate the need to use find_package(), or find_ups_product() for transitive-only

dependencies

eliminate the need to use find_library(), find_file(), or find_program() for

non-CMake external dependencies.

deal trivially with header-only dependencies

eliminate the need to use Cetbuildtools, or Cetmodules in dependent packages built

with CMake

eliminate the need to generate and maintain product_deps files

6/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



ªBut couldn’t I do all this without using Cetbuildtools or Cetmodules?º

Sure, but that would involve:

either :

writing a whole lot of CMake infrastructure or

hand-rolling CMake config files for every package, and keeping track of transitive

dependencies manually

writing a lot more CMake code in each package

doing a lot of work that’s already been done for you

7/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



ªOK, fine, so what’s the value added by Cetmodules?º

Auto-generation of CMake config files, including:

find_dependency() calls for transitive dependencies

useful variable definitions, including Cetbuildtools compatibility

(<project>_OLD_STYLE_CONFIG_VARS)

CMAKE_MODULE_PATH additions to find provided CMake modules

Scoped target definitions (e.g. dk2nu::Tree, art_plugin_support::ToolMaker)

All the accounting required to collect the information needed to enable auto-generation.

8/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



ªOK, fine, so what’s the value added by Cetmodules?º

Mechanisms to enable the developer to provide the information:

overrides for CMake functions: include(), find_package()

functions combining multiple CMake features: cet_make_library(), cet_test(),

basic_plugin(). . .

A path from UPS-dependent building and packaging to an agnostic system suitable for

(e.g.) Spack.

9/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



New concepts: dependency types

Direct dependencies shared library X1 from package X needs shared library Y1 from

package Y.

Indirect transitive dependencies library W1 from package W needs library X1, but

needs to know where Y1 is so X1’s load-time dependencies can be satisfied.

Direct transitive dependencies library W1 from package W uses FancyHeader.h from X,

which defines an inlined function requiring symbols defined in library Z1.

10/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



New concepts: targets vs variables

Variables: one name -> one value

ART_FRAMEWORK_SERVICES_OPTIONAL_RANDOMNUMBERGENERATOR_SERVICE ->

.../art_Framework_Services_Optional_RandomNumberGenerator_service.so

Targets: one name -> many properties:

art::Framework_Services_Optional_RandomNumberGeneratorService ->

SHARED

IMPORTED

INTERFACE_INCLUDE_DIRECTORIES "${_IMPORT_PREFIX}/include"

INTERFACE_LINK_LIBRARIES

"art::Framework_Services_Registry;art::Utilities..."

IMPORTED_LOCATION_RELWITHDEBINFO

".../libart_Framework_Services_Optional_RandomNumberGenerator.so"

. . .

11/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



New concepts: library types (familiar)

STATIC -> libXXX.a

concrete file

code defining required symbols extracted from .a and included in dependent library or

executable

SHARED -> libXXX.so

concrete file

code defining required symbols loaded from .so at runtime for use by dependent library or

executable

12/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



New concepts: library types (new)

INTERFACE libraries

Convey header-propagated transitive dependencies

No library!

add_library(art_plugin_support::toolMaker INTERFACE IMPORTED)

set_target_properties(art_plugin_support::toolMaker PROPERTIES

INTERFACE_INCLUDE_DIRECTORIES "${_IMPORT_PREFIX}/include"

INTERFACE_LINK_LIBRARIES "art::Utilities;canvas::canvas..."

INTERFACE_SOURCES "${_IMPORT_PREFIX}/include/art/Utilities/make_tool.h"

)

13/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



New concepts: library types (new)

MODULE -> libXXX.so, XXX.so

concrete file

cannot be linked to ± usable only via dlopen()

ideal for plugin registration code

OBJECT -> mypkg::XXX_objects -> ethel.o, bill.o, charlie.o, anthea.o

virtual, CMake-only concept

list of object files: compile once, use in both SHARED and STATIC libraries.

14/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



New concepts: plugin implementation and registration libraries

Currently, registration code and implementation code are always in the same library.

Problematic for plugins with user-visible interface: services, tools.

C-linkage -> ODR violations

memory bloated with code that may never be needed

Solution: put implementation, registration code in separate libraries

15/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



New concepts: plugin implementation and registration libraries

libart_Framework_Services_Optional_RandomNumberGenerator.so

SHARED, linkable

art::Framework_Services_Optional_RandomNumberGenerator_service

RandomNumberGenerator.cc

libart_Framework_Services_Optional_RandomNumberGenerator_service.so

MODULE, not linkableÐno exported target for dependencies

RandomNumberGenerator_service.cc

Linking, naming, export, import all handled by Cetmodules.

16/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



ªSo how do I use all this stuff, then?º

Understand the code you’re writing

What is it providing?

What is required to use it?

What types of dependency does it have and/or confer on users?

New keywords to find_package():

PUBLIC dependents will also need to know where this package is.

PRIVATE Needed only by us: macros, build-only, test dependencies, data, . . .

17/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



ªSo how do I use all this stuff, then?º

Use targets in library link lists, not library file names or variables

header locations, transitive dependencies, . . .

New keywords for library link lists:

INTERFACE you don’t need this library, but users will.

PUBLIC needed to link this library, and also needed directly by dependents.

PRIVATE needed only to link this library

18/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration



ªSo how do I use all this stuff, then?º

New keywords for cet_make_library()

Move away from GLOBbed lists

Prevents rebuilds, hysteresis

19/19 LArSoft Coordination Meeting, 2021-11-02 | Cetmodules 2: overview, highlights, and implications for UPS to Spack migration


