C³: An Advanced Concept for a e+e- Linear Collider

Emilio Nanni, Caterina Vernieri Thanks to Many for Contributions / Discussions Nov. 2, 2021

Acknowledgements

SLAC-PUB-17629 October 27, 2021

C^3 : A "Cool" Route to the Higgs Boson and Beyond

MEI BAI, TIM BARKLOW, RAINER BARTOLDUS, MARTIN BREIDENBACH^{*}, PHILIPPE GRENIER, ZHIRONG HUANG, MICHAEL KAGAN, ZENGHAI LI, THOMAS W. MARKIEWICZ, EMILIO A. NANNI^{*}, MAMDOUH NASR, CHO-KUEN NG, Marco Oriunno, Michael E. Peskin^{*}, Thomas G. Rizzo, Ariel G. Schwartzman, Dong Su, Sami Tantawi, Caterina Vernieri^{*}, Glen White, CHARLES C. YOUNG

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025

John Lewellen, Evgenya Simakov

Los Alamos National Laboratory, Los Alamos, NM 87545

JAMES ROSENZWEIG

Department of Physics and Astronomy, University of California, Los Angeles, CA 90095

Bruno Spataro

INFN-LNF, Frascati, Rome 00044, Italy

VLADIMIR SHILTSEV

Fermi National Accelerator Laboratory, Batavia IL 60510-5011

ABSTRACT

We present a proposal for a cold copper distributed coupling accelerator that can provide a rapid route to precision Higgs physics with a compact 8 km footprint. This proposal is based on recent advances that increase the efficiency and operating gradient of a normal conducting accelerator. This technology also provides an e^+e^- collider path to physics at multi-TeV energies. In this article, we describe our vision for this technology and the near-term R&D program needed to pursue it.

ArXiv:2110.15800

Snowmass Contribution Snowmass LOI

Additional Contributors/ Proponents: Dennis Palmer Emma Snively Cici Hanna Charlotte Whener Annika Gabriel Gordon Bowden Andy Haase Julian Merrick Bob Conely Mitchell Schneider Radiabeam Brandon Weatherford

November, 2 2021

The Higgs Boson

Snowmass Early Career Seminar - November 2, 2021

 $\mathcal{I} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ + iFNY+ $\chi_i \mathcal{Y}_{ij} \mathcal{Y}_j \phi + h.c.$ + $|D_{\mu} \phi|^2 - V(\phi)$ Ø

Higgs Boson Production at the LHC

LHC at 13 TeV is producing SM H bosons at a rate of ~ 2000/hr

Snowmass Early Career Seminar - November 2, 2021

How does it Decay ($m_H = 125$ GeV) ?

Snowmass Early Career Seminar - November 2, 2021

Is it a SM Higgs boson?

- Mass
- Spin-parity (**0**+)
- Width
- The couplings to fermions and bosons
- Study the self-coupling
- Any non-SM property?

Higgs Boson mass measured with relative uncertainty < 0.2%

Lepton momentum scale uncertainty is **0.05-0.3**% The total calibration uncertainty for **photons** is **0.2%–0.3%**

Snowmass Early Career Seminar - November 2, 2021

ATLAS-CONF-2019-005

No new particles discovered at the LHC so far...

What's next? How can we use the Higgs to find new physics?

<u>Arxiv:1506.05992</u>

Higgs couplings: precision & kinematic

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{M^2} \sum_{k} \mathcal{O}_k$$

Sub-percent level measurements can test TeV-scale new physics effect If E~m_H and M~1 TeV, the effects of **dim-6** (8) operators are of the order of **few** % (10-4) •

$$\delta O \sim \left(\frac{v}{M}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{M}\right)$$

Measurements at large transferred momentum (Q) probe large M even if precision is low

$$\delta O_Q \sim \left(\frac{Q}{M}\right)^2$$

Snowmass Early Career Seminar - November 2, 2021

The **EFT formalism summarizes** deviations that might appear in a very wide class of models beyond the SM

Assuming new physics at some scale $M \gg v$

15% effect on δO_Q for M ~ 2.5 TeV

Higgs at high p_T

At high H p_T we can directly probe modifications in top quark coupling

Snowmass Early Career Seminar - November 2, 2021

Gluon fusion H to bb at high p_T

Only handful of events from ZZ and $\gamma\gamma$ for Higgs p_T >500 GeV, $b\bar{b}$ (and $\tau\tau$) becomes important at high p_T Measurements made possible thanks to state of the art **boosted event reconstruction techniques** to identify Higgs to bb • Full Run 2 result from ATLAS and CMS : *first look at p_T^H > 1 TeV phase space*

ATLAS-CONF-2021-010 CMS-JHEP 12 (2020) 085

Snowmass Early Career Seminar - November 2, 2021

Constraints on the couplings

- Indirect access to $H \rightarrow cc$ through differential distributions
 - Similar sensitivity to direct searches

•

<u>CMS-Phys. Lett. B 792 (2019) 369</u>

CMS 35.9 fb⁻¹ (13 TeV) ____40 ⊻ -2∆ In L -2∆ In L Combination $H \rightarrow ZZ$ 30 -6 $H \rightarrow \gamma \gamma$ 20 -510 -3**−10** -20 ★SM --2σ -1σ B unconstr. -30-60 -40 -200 20 40 60 κ_{c}

Testing the shape of the potential

Snowmass Early Career Seminar - November 2, 2021

Higgs boson self-coupling

$$\Delta\sigma/\sigma\sim\Delta\lambda/\lambda$$
 if $\lambda\sim\lambda_{SM}$

Extremely challenging measurement at the LHC, but it can be sensitive to large deviations from BSM: $\kappa_{\lambda} = \lambda / \lambda_{SM}$

```
Snowmass Early Career Seminar - November 2, 2021
```


Double Higgs Results

Similar sensitivity from several channels to SM HH production

• Best channels are $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau\tau$

ATLAS Preliminary $\sqrt{s} = 13$ TeV, 139 fb⁻¹ $\sigma_{ggF+VBF}^{SM} = 32.78$ fb

O(20%) precision on the Higgs self-coupling would allow to exclude/demonstrate at 5σ models of electroweak baryogenesis

Caterina Vernieri

10 95% CL upper limit on signal strength SLAC Colloquium • October 25, 2021

	4.3	5.7	_
1	3.1	3.1	_

LHC -> HIGH LUMINOSITY LHC

LHC

Run 2 8M H	Upgrade and e	of accele xperimen	erator ts	R 1	UN 3
2018	2019	2020	2021	2022	202
Caterina Vernieri				DAY Phase-2 upgrad	HL- es ar

HL-LHC

Higgs physics at the HL-LHC

The High Luminosity era of LHC will dramatically expand the physics reach for Higgs physics: 2-4% precision for many of the Higgs couplings

- - •

BUT much larger uncertainties on $Z\gamma$ and charm and ~50% on the self-coupling

Snowmass Early Career Seminar - November 2, 2021

Wish list beyond HL-LHC:

1. Establish Yukawa couplings to light flavor \implies **needs precision** 2. Establish self-coupling \implies needs high energy

Why e+e-?

- Initial state well defined & polarization \implies High-precision measurements •

Snowmass Early Career Seminar

Higgs bosons appear in 1 in 100 events \implies Clean experimental environment and trigger-less readout

Higgs at e+e-

- Above 500 GeV
 - Hvv dominates
 - ttH opens up
 - HH production accessible with ZHH

Linear vs. Circular

- **Linear** e⁺e⁻ colliders: ILC, C³, CLIC
 - Reach higher energies (~ TeV), and can use polarized beams
 - Relatively low radiation
 - Collisions in bunch trains
- **Circular** e⁺e⁻ colliders: FCC-ee, CEPC
 - Highest luminosity collider at Z/WW/ Zh
 - limited by synchrotron radiation above 350–400 GeV
 - Beam continues to circulate after Ο collision

Various proposals ...

CEPC 240 GeV

... > **TeV**

CLIC 380/1500/3000 GeV

FCC-ee 240/365 GeV

Luminosity: Starting Point for a High Energy e+e- Linear Collider

- Using established collider designs to inform initial parameters
- Target design at 2 TeV CoM with 9 MW single beam power (~2 MW at 250 GeV CcM)

Freq (Gflz) CoM

Machine	CLIC	NLC	C ³
Freq (GHz)	12.0	11.4	5.7
a (mm)	2.75	3.9	2.6
Charge (nC)	0.6	1.4	1
Spacing	6	16	19
# of bunches	312	90	75

https://clic-meeting.web.cern.ch/clicmeeting/clictable2010.html NLC, ZDR Tbl. 1.3,8.3

Single Be ILC TDR 0 500 0

IILC New

16

eam Power (MW) 8 01 9 8

4

2

Leverage the Development of Beam Generation and Delivery Systems for C³

- ullet
 - Beam delivery and IP modified from ILC
 - Damping rings modified from CLIC \bullet
 - Injectors to be optimized with CLIC as baseline \bullet

C³ - Investigation of Beam Delivery Adapted from ILC/NLC

Snowmass Early Career Seminar

Large portions of accelerator complex are compatible between LC technologies

Main Linac Drives the Cost and Scale of Any e+e- Linear Collider

An novel route to a linear e+e- collider...

- Cool Copper Collider

- C³ is based on a new SLAC technology
 - dramatically improving efficiency and breakdown rate
- distributed power to each cavity from a common RF manifold
- operation at cryogenic temperatures (LN2 ~80K)
- robust operations at high gradient: $120 \sim MeV/m$
- scalable to multi-TeV operation

EF workshop restart C3 LOI Link

Breakthrough in the Performance of RF Accelerators

- RF power coupled to each cell no on-axis coupling
- Full system design requires modern virtual prototyping

- Optimization of cell for efficiency (shunt impedance) $R_{\rm s} = G^2 / P \left[M\Omega / m \right]$
- Control peak surface electric and magnetic fields
- Key to high gradient operation

Snowmass Early Career Seminar

Tantawi, Sami, et al. "Design and demonstration of a distributed-coupling linear accelerator structure." Physical Review Accelerators and Beams 23.9 (2020): 092001.

Electric field magnitude produced when RF manifold feeds alternating cells equally

 $\mathbf{28}$

Transformative Impact for High-Gradient Cryo-Copper Accelerators

- Cryogenic temperature elevates performance • in gradient
 - Material strength is key factor •
 - Operation at 77 K with liquid nitrogen is • simple and practical
- Large-scale production, large heat capacity, • simple handling
 - Small impact on electrical efficiency •

 $\eta_{cp} = LN Cryoplant$ $\eta_{cs} = Cryogenic Structure$ $\eta_k = RF Source$

 $\frac{\eta_{cs}}{\eta_k}\eta_{cp}\approx \frac{2.5}{0.5}[0.15]\approx 0.75$

Cahill, A. D., et al. PRAB 21.10 (2018): 102002.

Snowmass Early Career Seminar

Why 550 GeV?

We propose **250** GeV with a relatively inexpensive upgrade to **550** GeV

- An orthogonal dataset at 550 GeV to cross-check a deviation from the SM predictions observed at 250 GeV
- From 500 to 550 GeV a factor 2 • improvement to the top-Yukawa coupling
- O(20%) precision on the Higgs self-coupling would allow to exclude/demonstrate at 5σ models of electroweak baryogenesis

Collider Luminosity Polarization g_{HZZ} (%) g_{HWW} (%) g_{Hbb} (%) g_{Hcc} (%) g_{Hgg} (%) $g_{H\tau\tau}$ (%) $g_{H\mu\mu}$ (%) $g_{H\gamma\gamma}$ (%) $g_{HZ\gamma}$ (%) g_{Htt} (%) g_{HHH} (%) Γ_H (%)

	HL-LHC	C^3 /ILC 250 GeV	C^3 /ILC 500 Ge
	3 ab^{-1} in 10 yrs	2 ab^{-1} in 10 yrs	$+4 \text{ ab}^{-1} \text{ in } 10 \text{ y}$
1	-	$\mathcal{P}_{e^+} = 30\%~(0\%)$	$\mathcal{P}_{e^+} = 30\% \ (0\%)$
	3.2	0.38(0.40)	0.20(0.21)
	2.9	0.38(0.40)	0.20(0.20)
	4.9	$0.80 \ (0.85)$	0.43(0.44)
	_	1.8(1.8)	1.1(1.1)
	2.3	1.6(1.7)	0.92(0.93)
	3.1	0.95(1.0)	$0.64 \ (0.65)$
	3.1	4.0(4.0)	3.8(3.8)
	3.3	1.1(1.1)	0.97(0.97)
	11.	8.9(8.9)	6.5(6.8)
	3.5	—	$3.0 (3.0)^*$
	50	49(49)	22(22)
	5	1.3(1.4)	0.70(0.70)

Collider	NLC	CLIC	ILC	C^3	C^3
CM Energy [GeV]	500	380	250 (500)	250	550
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
Gradient $[MeV/m]$	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Length [km]	23.8	11.4	20.5(31)	8	8
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014

Snowmass Early Career Seminar

C³ timeline

	201	9-202	24	2025-2034			2035-2044			2045-2054			2055-2064							
Accelerator																				
Demo proposal																				
Demo test																				
CDR preparation								1												
TDR preparation	1							İ -												
Industrialization	1																			
TDR review																				
Construction																				
Commissioning																				
$2 \text{ ab}^{-1} @ 250 \text{ GeV}$	1							ĺ												
RF Upgrade								ĺ												
$4 \text{ ab}^{-1} @ 550 \text{ GeV}$																				
Multi-TeV Upg.																				

Development of C³ Accelerating Structure

- Two Key Technical Advances: Distributed Coupling and Cryo-Copper RF
- Implement most high-gradient advances

One meter (40-cell) C-band design Scaling fabrication techniques in with reduce peak E and H-field length and including controlled gap

Z. Li, S. Tantawi

Tuned, confirmed 77K performance, first 300k high power test in progress

Performance of Single-Cavity Structure Prototypes

- First high gradient test at C-band
- Side coupled, split-cell reduced peak field, reduced phase adv. •
- Exceed ultimate C3 field strengths •
- for release

LANL Test of single cell **SLAC C-band structure**

Structure Exceeds 120 MeV/m **Slot Damping Prototype** for 500 ns @ Room Temp Working on NiCr Coating **BDR Data Collected** 300 μ m gap to 300 μ m gap to H-field 200matched load matched load X 1165.83 Y 172.24 4.8476E+0 $Q \approx 10^3$ (vs 4x10⁴) Dipole Accelerating Mode Mode 50 -2000 2000 -10001000 3000 Time (ns) Very promising for polarized cryo-gun

(Rosenzweig, et al. NIM 909 (2018): 224-228)

• High power in up to 1 microsecond - break down rate statistics collected and being prepared

Tunnel Layout for 250 GeV CoM

Cryomodule Design Scalable from 250 GeV to multi-TeV

Oriunno, Breidenbach

Summary of Parameters for 250 GeV Conceptual Design

Lumi

inosity - 1.3x10^34		Parameter (250 GeV CoM)	Units	Value	
Temperature (K)					
Beam Loading (%)	45	Reliquification Plant Cost	M\$/MW	18	
Gradient (MeV/m)	70	Single Beam	MW	2	
Flat Top Pulse Length (µs)	0.7	7 Power (125 GeV linac)			
Cryogenic Load @ 77K (MW)	9	Total Beam Power	MW	4	
Electrical Load (MW)	100		B.#\A/	40	
		Iotal RF Power	IVI VV	18	
Trains repeat at 120 Hz	Heat Load at Cryogenic Temperature	MW	9		
Pulse Format	Electrical Power for RF	MW	40		
nC bunches spaced by = periods (5 25 ns)	RF envelope 700 ns	Electrical Power for Cryo-Cooler	MW	60	

Demonstration Facility

- •
- Minimum requirement for Demo Facility: ٠
 - Demonstrate operation of fully engineered and operational cryomodule •
 - Will iterate on cryomodule design (min. 3 cryomodules)
 - Demonstrate operation during cryogenic flow equivalent to main linac at full liquid/gas flow rate ٠
 - Operation with a multi-bunch photo injector high charges bunches to induce wakes, tunable • delay witness bunch to measure wakes
 - Demonstrate full operational gradient 120 MeV/m (and higher) in single bunch mode (1GeV) **Fully damped-detuned accelerating structure**
 - •
 - Work with industry to develop C-band source unit (3 vendors for klystron / 3 vendors for modulator • and integration)
- This step is included in our timeline. The cost is O(100) M\$. •
 - This demonstration directly benefits development of compact FELs for photon science. •
- The other elements needed for a linear collider the sources, damping rings, and beam delivery • system - already have mature designs created for the ILC and CLIC.
 - Our current baseline uses these directly although we will look for further cost-optimizations for the • specific needs of the C³

We are proposing a demonstration facility to carry out a "string test" of three C³ cryomodules.

Snowmass Early Career Seminar

Getting Involved C³ R&D

C³ R&D, System Design and Project Planning are ongoing

- Early career scientists should drive the agenda for an experiment they will build/use
- Many opportunities for other institutes to collaborate on: •
 - (SiD) detector optimization, background studies, beam dynamics, vibrations and • alignment, cryogenics, rf engineering, controls, etc
- Research opportunities at SLAC for short-long term: •
 - Undergraduate Research Opportunities
 - DOE SULI <u>https://science.osti.gov/wdts/suli</u> •
 - Graduate Research Opportunities
 - DOE SCGSR <u>https://science.osti.gov/wdts/scgsr</u> •

High Energy Physics: Caterina Vernieri <u>caterina@slac.stanford.edu</u> Accelerator Science: Emilio Nanni <u>nanni@slac.stanford.edu</u> Snowmass Early Career Seminar

Conclusions

- C³ can provide a rapid route to precision Higgs physics with a compact 8 km footprint •
 - Higgs physics run by 2040
 - Possibly, a US-hosted facility
- C³ time structure is compatible with SiD-like detector overall design and ongoing optimizations.
- C³ can be quickly and inexpensively upgraded to 550 GeV
- C³ can be extended to a 3 TeV e⁺e⁻ collider with capabilities similar to CLIC •
- With new ideas, the C³ lab can provide physics at 10 TeV and beyon •
- May be possible to do physics at an intermediate stage in the construction at 91 GeV • • We do not consider this a part of our baseline, but we mention the possibility in case there is community interest for a Giga-Z (2 yrs) program.

Extra

RF Power Requirements

- 70 MeV/m 250 ns Flattop (extendible to 700 ns)
- ~1 microsecond rf pulse, ~30 MW/m
 - Conservative 2.3X enhancement from cryo
- No pulse compression
- Ramp power to reduce reflected power
- Flip phase at output to reduce thermals
- One 65 MW klystron every two meters -> Matches CLIC-k rf module power

HOM Damping with Tapered Lossy Slot - Preliminary - Z. Li

15.0

- Slot surface conductivity: 1e6 ullet
- Tapered slot height: from 300 micron to 100 micron •

Need to extend to 40 GHz / Optimize coupling / Modes below 10^4 V/pC/mm/m Snowmass Early Career Seminar

RF Source R&D Remains a Major Focus Over the Timescale of the Next BLAC

- for future facilities
- cost

Optimizing the cost of NCRF technology a fundamental requirement for its implementation

RF source cost is the key driver for gradient and cost – need to focus R&D on reducing source

Detector Design Requirements

ILC timing structure: Fraction of a percent duty cycle

- Power pulsing possible, significantly reduce hea
 - Factor of 50-100 power saving for FE analog power Ο
- Tracking detectors **don't need active cooling**
 - Significantly reduction for the material budget
 - **Triggerless readout** is the baseline

C³ time structure is compatible with SiD-like detector overall design and ongoing optimizations.

ILC timing structure

1 ms long bunch trains at 5 Hz 2820 bunches per train 308ns spacing

,	
at	load

Collider	ILC	CCC
σ_z	$300 \ \mu m$	$100 \ \mu m$
eta_x	8.0 mm	$13 \mathrm{mm}$
eta_y	$0.41 \mathrm{mm}$	$0.1 \mathrm{mm}$
ϵ_x	500 nm/rad	900 nm/rad
ϵ_y	35 nm/rad	20 nm/rad
N bunches	1312	133
Repetition rate	$5~\mathrm{Hz}$	$120 \mathrm{~Hz}$
Crossing angle	0.014	0.020 Tot
Crab angle	0.014/2	0.020/2

