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The Higgs Boson
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Higgs Boson Production at the LHC
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How does it Decay (mH = 125 GeV) ?

ZZ → 4ℓ
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Is it a SM Higgs boson?

• Mass  
• Spin-parity (0+) 
• Width 
• The couplings to fermions and bosons  
• Study the self-coupling 
• Any non-SM property?
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Higgs Boson mass measured with relative uncertainty < 0.2% 
Lepton momentum scale uncertainty is 0.05-0.3% 

The total calibration uncertainty for photons is 0.2%–0.3%

ATLAS-CONF-2020-026 
CMS-Eur. Phys. J. C 81 (2021) 488

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-026/
http://dx.doi.org/10.1140/epjc/s10052-021-09200-x
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ATLAS-CONF-2019-005 
CMS-JHEP 01 (2021) 148

https://cds.cern.ch/record/2668375
https://arxiv.org/abs/2009.04363
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What’s next? 
How can we use the Higgs to find new physics?

No new particles discovered at the LHC so far…

Arxiv:1506.05992

https://arxiv.org/abs/1506.05992v2
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Higgs couplings: precision & kinematic 

Sub-percent level measurements can test TeV-scale new physics effect 

• If E~mH  and M~1 TeV, the effects of dim-6 (8) operators are of the order of few % (10-4)

arXiv:1310.8361

Assuming new physics at some scale  M ≫ v

Measurements at large transferred momentum (Q) probe large M even if precision is low 

15% effect on δOQ for M ~ 2.5 TeV
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Higgs at high pT

At high H pT we can directly probe 
modifications in top quark coupling 

arXiv:1612.00283
JHEP 10 (2016) 123
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https://arxiv.org/abs/1612.00283
https://link.springer.com/article/10.1007/JHEP10(2016)123
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Gluon fusion H to bb̄ at high pT

Only handful of events from ZZ and γγ for Higgs pT >500 GeV,  bb̄  (and 𝜏𝜏) becomes important at high pT 

Measurements made possible thanks to state of the art boosted event reconstruction techniques to identify Higgs to bb̄ 
• Full Run 2 result from ATLAS and CMS : first look at pTH > 1 TeV phase space 
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ATLAS-CONF-2021-010 
CMS-JHEP 12 (2020) 085

https://cds.cern.ch/record/2759284?ln=en
https://arxiv.org/abs/2006.13251
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Constraints on the couplings 
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• Indirect access to 𝐻 → cc through differential distributions 
• Similar sensitivity to direct searches

CMS-Phys. Lett. B 792 (2019) 369 
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γγ →H 

 ZZ→H 

Preliminary CMS  (13 TeV)-135.9 fb

Best fit SM σ2 σ1 

H(bb̄) improves constraints 
to new physics by 30%

https://arxiv.org/abs/1812.06504
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Testing the shape of the potential
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Higgs boson self-coupling
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Double Higgs Results
ATLAS-COM-CONF-2021-052 

CMS-Phys. Rev. Lett. 122, 121803 (2019)  

Similar sensitivity from several channels to SM HH production  
• Best channels are bb̄γγ and bb̄ττ

15

O(20%) precision on the Higgs self-coupling would allow  
to exclude/demonstrate at 5𝜎 models of electroweak baryogenesis 

https://cds.cern.ch/record/2786865
https://arxiv.org/abs/1811.09689
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LHC → High Luminosity LHC
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2019 2020 2021 2022 2023 2024 2025 2026 2027

Upgrade of accelerator 
and experiments 

HL-LHC installation 
ATLAS Upgrade

LHC HL-LHC

2018

Run 2 Run 3 Run 4

170M H 
120k  HH

2037…

8M H 16M H 

Today

Phase-2 HL-LHC detector 
upgrades are being built  
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Higgs physics at the HL-LHC

The High Luminosity era of  LHC will dramatically expand the physics reach for Higgs physics:  
• 2-4% precision for many of the Higgs couplings 

• BUT much larger uncertainties on Z𝜸 and charm and ~50% on the self-coupling
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1902.10229
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https://cds.cern.ch/record/2651134/files/1902.10229.pdf
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What’s next?

18

Wish list beyond HL-LHC: 
 
1. Establish Yukawa couplings to light flavor ⟹ needs precision 

2. Establish self-coupling ⟹ needs high energy 

LHC

2030 2040 2060

HL-LHC

e+e-

very high energy

ILC/C3/CLIC 
FCC-ee/CEPC

FCC-hh 
µ 

gamma
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Why e+e-?

• Initial state well defined & polarization  ⟹ High-precision measurements  

• Higgs bosons appear in 1 in 100 events   ⟹ Clean experimental environment and trigger-less readout 

19

pp/LHC e+e-
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Higgs at e+e- 

• ZH is dominant at 250 GeV 
• Above 500 GeV  

• Hvv dominates  
• ttH opens up 
• HH production accessible with ZHH

20
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Linear vs. Circular

○ Linear e+e- colliders: ILC, C3, CLIC 
○ Reach higher energies (~ TeV), and can 

use polarized beams 
○ Relatively low radiation 
○ Collisions in bunch trains 

○ Circular e+e- colliders: FCC-ee, CEPC 
○ Highest luminosity collider at Z/WW/

Zh 
○ limited by synchrotron radiation 

above 350– 400 GeV  
○ Beam continues to circulate after 

collision

21
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Various proposals … 

22

250/500 GeV
250/550 GeV 
 … > TeV

CLIC 380/1500/3000 GeV 

FCC-ee 
240/365 GeV 

CEPC 240 GeV 
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Luminosity: Starting Point for a High Energy e+e- Linear Collider 

•   Using established collider designs to 
inform initial parameters
•   Target design at 2 TeV CoM with 9 MW 
single beam power (~2 MW at 250 GeV 
CoM)

23

Machine CLIC NLC C3

Freq (GHz) 12.0 11.4 5.7
a (mm) 2.75 3.9 2.6
Charge (nC) 0.6 1.4 1
Spacing 6 16 19
# of bunches 312 90 75

https://clic-meeting.web.cern.ch/clic-
meeting/clictable2010.html
NLC, ZDR Tbl. 1.3,8.3

Beam Power

Luminosity

https://arxiv.org/abs/1711.00568
https://arxiv.org/abs/1608.07537

Machine CLIC NLC C3

Freq (GHz) 12.0 11.4 5.7
a (mm) 2.75 3.9 2.6
Charge (nC) 0.6 1.4 1
Spacing 6 16 19
# of bunches 312 90 75

https://clic-meeting.web.cern.ch/clic-
meeting/clictable2010.html
NLC, ZDR Tbl. 1.3,8.3

Beam Power

Luminosity

https://arxiv.org/abs/1711.00568
https://arxiv.org/abs/1608.07537

2 TeV CoM

Luminosity Scaling for Circular/Linear

arXiv:1412.2928
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Leverage the Development of Beam Generation and Delivery Systems for C3 

• Large portions of accelerator complex are compatible between LC technologies  
• Beam delivery and IP modified from ILC 
• Damping rings modified from CLIC 
• Injectors to be optimized with CLIC as baseline

24

C3 - Investigation of Beam Delivery 
Adapted from ILC/NLC

G. White

C3 - 8 km footprint for 250/550 GeV

(Not to scale)
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Main Linac Drives the Cost and Scale of Any e+e− Linear Collider 

25

ILC 500 GeV TDR

CLIC

Challenge is Only Exacerbated as We Move to the Multi-TeV Scale



An novel route to a linear e+e- collider…
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C3 - Cool Copper Collider

● C3 is based on a new SLAC technology 
●  dramatically improving efficiency and 

breakdown rate 
● distributed power to each cavity from a 

common RF manifold 
● operation at cryogenic temperatures (LN2 

~80K) 
● robust operations at high gradient: 

120~MeV/m 
● scalable to multi-TeV operation

First C3 
structure 
at SLAC

27

High Gradient Operation at 150 MV/m 

UW Seminar Aug. 2021
C3 LOI LinkEF workshop restart

Cryogenic Operation at X-band

https://www.youtube.com/watch?v=1zG8588_Gjw
https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF3_AF4-EF1_EF2_C3_Collaboration-243.pdf
https://indico.fnal.gov/event/49756/contributions/222379/attachments/146741/187572/higgs-c3-Sept2021-EF_Final.pdf
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Breakthrough in the Performance of RF Accelerators

•   RF power coupled to each cell – no on-axis coupling
•   Full system design requires modern virtual prototyping 

•   Optimization of cell for efficiency (shunt impedance)

•   Control peak surface electric and magnetic fields
•   Key to high gradient operation

28

Electric field magnitude produced when RF manifold feeds alternating cells equally

Beam

RF Power

!! = #" $⁄ [MΩ /m]  

Tantawi, Sami, et al. "Design and demonstration of a distributed-coupling linear accelerator structure." Physical Review Accelerators and Beams 23.9 (2020): 092001.
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Transformative Impact for High-Gradient Cryo-Copper Accelerators

• Cryogenic temperature elevates performance 
in gradient 
• Material strength is key factor 
• Operation at 77 K with liquid nitrogen is 

simple and practical 
• Large-scale production, large heat capacity, 

simple handling 
• Small impact on electrical efficiency  

29

Cahill, A. D., et al. PRAB 21.10 (2018): 102002.
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Why 550 GeV?

We propose 250 GeV with a 
relatively inexpensive upgrade to 
550 GeV  
• An orthogonal dataset at 550 

GeV to cross-check a deviation 
from the SM predictions observed 
at 250 GeV 

• From 500 to 550 GeV a factor 2 
improvement to the top-Yukawa 
coupling 

• O(20%) precision on the Higgs 
self-coupling would allow to 
exclude/demonstrate at 5𝜎 models 
of electroweak baryogenesis 

30

SLAC-PUB-17629
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C3 parameters

31

SLAC-PUB-17629
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 C3 timeline

32
HL-LHC
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Development of C3 Accelerating Structure

• Two Key Technical Advances: Distributed Coupling and Cryo-Copper RF 
• Envision meter-scale accelerating structures, technology demonstration underway 
• Implement most high-gradient advances

33
Z. Li, S. Tantawi

One meter (40-cell) C-band design 
with reduce peak E and H-field

Scaling fabrication techniques in 
length and including controlled gap

Tuned, confirmed 77K 
performance, first 300k high 

power test in progress

High power test 
at Radiabeam
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Performance of Single-Cavity Structure Prototypes 

• First high gradient test at C-band 
• Side coupled, split-cell reduced peak field, reduced phase adv. 
• Exceed ultimate C3 field strengths 
• High power in up to 1 microsecond - break down rate statistics collected and being prepared 

for release

34

LANL Test of single cell 
SLAC C-band structure 

Slot Damping Prototype  
Working on NiCr Coating

Structure Exceeds 120 MeV/m 
for 500 ns @ Room Temp 

BDR Data Collected 

Very promising for polarized cryo-gun 
(Rosenzweig, et al. NIM 909 (2018): 224-228) 
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Tunnel Layout for 250 GeV CoM

35

• Cryomodule unit - 9 m (630 MeV)

Usable Tunnel Width - 9.5 m 
(Same tunnel width as ILC)
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Shared nitrogen 
supply and return

Cryomodule Design Scalable from 250 GeV to multi-TeV

•   X-band structure test demonstrated full average 
power over short length (0.25 m)
•   Cryomodule design developed for cryoplant 
layout to cool 1.2 MW/km thermal load at 77K

36Oriunno, Breidenbach

~9m Cryomodule (90% fill factor) 

2 TeV CoM
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Summary of Parameters for 250 GeV Conceptual Design
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Temperature (K) 77

Beam Loading (%) 45

Gradient (MeV/m) 70

Flat Top Pulse Length (µs) 0.7

Cryogenic Load @ 77K (MW) 9

Electrical Load (MW) 100

Pulse Format

Parameter (250 
GeV CoM)

Units Value

Reliquification 
Plant Cost

M$/MW 18

Single Beam 
Power (1 TeV 

linac)

MW 2

Total Beam Power MW 4

Total RF Power MW 18

Heat Load at 
Cryogenic 

Temperature

MW 9

Electrical Power 
for RF

MW 40

Electrical Power 
for Cryo-Cooler

MW 60
133 1 nC bunches spaced by 
30 RF periods (5.25 ns)

RF envelope 
700 ns

Luminosity - 1.3x10^34
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Demonstration Facility

• We are proposing a demonstration facility to carry out a “string test” of three C3  cryomodules. 
• Minimum requirement for Demo Facility: 

• Demonstrate operation of fully engineered and operational cryomodule 
• Will iterate on cryomodule design (min. 3 cryomodules) 

• Demonstrate operation during cryogenic flow equivalent to main linac at full liquid/gas flow rate 
• Operation with a multi-bunch photo injector - high charges bunches to induce wakes, tunable 

delay witness bunch to measure wakes 
• Demonstrate full operational gradient 120 MeV/m (and higher) in single bunch mode (1GeV) 
• Fully damped-detuned accelerating structure 
• Work with industry to develop C-band source unit (3 vendors for klystron / 3 vendors for modulator 

and integration) 
• This step is included in our timeline.  The cost is O(100) M$.   

•  This demonstration directly benefits development of compact FELs for photon science. 
• The other elements needed for a linear collider - the sources, damping rings, and beam delivery 

system - already have mature designs created for the ILC and CLIC.   
• Our current baseline uses these directly although we will look for further cost-optimizations for the 

specific needs of the C3

38
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Getting Involved  C3 R&D

C3  R&D, System Design and Project Planning are ongoing 
• Early career scientists should drive the agenda for an experiment they will build/use 
• Many opportunities for other institutes to collaborate on: 

• (SiD) detector optimization, background studies, beam dynamics, vibrations and 
alignment, cryogenics, rf engineering, controls, etc 

• Research opportunities at SLAC for short-long term: 
• Undergraduate Research Opportunities 

• DOE SULI https://science.osti.gov/wdts/suli  
• Graduate Research Opportunities 

• DOE SCGSR https://science.osti.gov/wdts/scgsr 

39

High Energy Physics: Caterina Vernieri caterina@slac.stanford.edu  
Accelerator Science: Emilio Nanni nanni@slac.stanford.edu  

https://science.osti.gov/wdts/suli
https://science.osti.gov/wdts/scgsr
mailto:caterina@slac.stanford.edu
mailto:nanni@slac.stanford.edu
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Conclusions

• C3 can provide a rapid route to precision Higgs physics with a compact 8 km footprint 
• Higgs physics run by 2040 
• Possibly, a US-hosted facility 

• C3  time structure is compatible with SiD-like detector overall design and ongoing 
optimizations. 

• C3 can be quickly and inexpensively upgraded to 550 GeV  
• C3 can be extended to a 3 TeV e+e- collider with capabilities similar to CLIC 
• With new ideas, the C3 lab can provide physics at 10 TeV and beyon 
• May be possible to do physics at an intermediate stage in the construction at 91 GeV 
• We do not consider this a part of our baseline, but we mention the possibility in case 

there is community interest for a Giga-Z (2 yrs) program.

40
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RF Power Requirements

42

Drop in power 
because no 
beam in sim

• 70 MeV/m 250 ns Flattop (extendible 
to 700 ns) 

• ~1 microsecond rf pulse, ~30 MW/m 
• Conservative 2.3X enhancement 

from cryo 
• No pulse compression 
• Ramp power to reduce reflected 

power 
• Flip phase at output to reduce 

thermals 

• One 65 MW klystron every two 
meters -> Matches CLIC-k rf module 
power

Thermals
Gradient
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HOM Damping with Tapered Lossy Slot - Preliminary - Z. Li

43

• Slot surface conductivity: 1e6
• Tapered slot height: from 300 micron to 100 micron

Tapered slot

Need to extend to 40 GHz / Optimize coupling / Modes below 10^4 V/pC/mm/m
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RF Source R&D Remains a Major Focus Over the Timescale of the Next P5

• Optimizing the cost of NCRF technology a fundamental requirement for its implementation 
for future facilities 

• RF source cost is the key driver for gradient and cost – need to focus R&D on reducing source 
cost 
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Understand the Impact on Advanced Collider Concept Enabled by 
the Goals Defined in the DOE GARD RF Decadal Roadmap

https://science.energy.gov/~/media/hep/pdf/Reports/DOE_HEP_GARD_RF_Research_Roadmap_Report.pdf 
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https://science.energy.gov/~/media/hep/pdf/Reports/DOE_HEP_GARD_RF_Research_Roadmap_Report.pdf
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Detector Design Requirements

ILC timing structure: Fraction of a percent duty cycle 
● Power pulsing possible, significantly reduce heat load 
○ Factor of 50-100 power saving for FE analog power 

● Tracking detectors don’t need active cooling 
○ Significantly reduction for the material budget 

● Triggerless readout is the baseline 
C3  time structure is compatible with SiD-like detector overall 
design and ongoing optimizations.

1 ms long bunch trains at 5 Hz 
2820 bunches per train 
308ns spacing 45

ILC timing structure

Temperature (K) 77

Beam Loading (%) 45

Gradient (MeV/m) 70

Flat Top Pulse Length (µs) 0.7

Cryogenic Load @ 77K (MW) 9

Electrical Load (MW) 100

Pulse Format

Parameter (250 
GeV CoM)

Units Value

Reliquification 
Plant Cost

M$/MW 18

Single Beam 
Power (1 TeV 

linac)

MW 2

Total Beam Power MW 4

Total RF Power MW 18

Heat Load at 
Cryogenic 

Temperature

MW 9

Electrical Power 
for RF

MW 40

Electrical Power 
for Cryo-Cooler

MW 60
133 1 nC bunches spaced by 
30 RF periods (5.25 ns)

RF envelope 
700 ns

C3 timing structure


