White Papers for IF03

Snowmass Topical Group on Solid State Detectors and Tracking

Anthony Affolder, Artur Apresyan, Steven Worm

November 19, 2021

IF03 Update

IF03 Topical Group Meetings

- Thursday 13:00 Central: https://indico.fnal.gov/category/1183/
- Emphasis on White Paper planning and completion

Kickoff (Restart) Meeting Nov 11

- Discussed overall timeline and expectations, also plans for Instrumentation Summaries Important dates (WP, TG, F submissions) and upcoming meetings (IF-Snowmass/CPAD, CSS) Opportunity to hear of recent progress and to ensure full-community is captured by the White
- Papers and Topical Group Summary
- Finalised contacts for each White Paper, addressed a few open questions on LOIs Short (~10 minute) presentations related to each White Paper, discussed status & draft structure

Actions:

- Post draft White Papers, LoIs, contacts to the twiki: https://snowmass21.org/instrumentation/tracking • Follow up White Paper contacts, Plan meetings approximately monthly: Dec, Jan, Feb...

IF03 White Papers (part 1)

(1) Physics motivations for requirements of tracking detectors (Requirements)

- Muon collider tracker requirements: IF9_IF3-EF9_EF0-AF4_AF1-143 S. Jindariani (FNAL)
- Strange Quark as probe for new physics in Higgs Sector: EF1_EF2-IF3_IF0_Valentina_Maria_Martina_Cairo-047 V.M.M. Cairo (SLAC)
- Searching for $B_s \rightarrow \Phi \nu \nu$ and other $b \rightarrow s \nu \nu$ processes at CEPC: EF3_EF0-RF1_RF0-IF3_IF6-077 M. Ruan (IHEP China)
- Exploring precision electroweak physics measurement potential of e+e- colliders: EF4_EF0-AF3_AF0-IF3_IF5_GrahamWilson-119 G. Wilson (KU)
- Jets and jet substructure at future colliders: EF5_EF7-TF7_TF0-IF6_IF3-CompF3_CompF0_Ben_Nachman-035 B. Nachman (LBNL) Letter of interest from the US LHCb Group: RF-EF-OF-CompF-011 M. Artuso (Syracuse)
- Solid State & Tracking in BRN: M. Artuso (Syracuse) IF03 Presentation
- Silicon detectors R&D and physics drivers for future machines: Caterina Vernieri IF03 Presentation
- **Parameters for future trackers:** Simone Griso (LBNL) IF03 Presentation
- EF perspective (Maxim Titov) and RF perspective (Marina Artuso (Syracuse)): CPM 130
- Will be organized by EF and RF liaisons to IF (Maxim, Caterina, Marina)
- Designed to give requirements/motivation for the rest of the White Papers

IF03 White Papers (part 2)

(2) 4D trackers, precision time + position; OR precision position + moderately good time (Timing)

- **colliders:** IF3 IF0 University of California Santa Cruz-018 S. Mazza (UCSC)
- Precision timing detectors for future colliders: IF3_IF7_Karri_DiPetrillo-142: K. DiPetrillo
- 4-dimensional trackers: IF3_IF7-131 A. Schwartzman (SLAC)

(3) Monolithic integrated silicon detectors, CMOS (MAPs)

- Silicon Pixel Detectors in Space: IF3_IF2_Jessica_Metcalfe-154 J. Metcalfe (ANL)
- Monolithic active pixel sensors for high performance tracking: IF7_IF3_Leo_Greiner-160 L. Greiner (LBNL)

(4) Integration and Packaging (Integration)

- 3D Integration of Sensors and Electronics: IF3_IF0_Ronald_Lipton-080 R. Lipton (FNAL)
- 2.5/3D integration: Robert Patti (NHanced Semiconductor INC) IF03 presentation

• Use of extremely thin 'LGAD' ultra-fast silicon detectors for fast timing and tracking in high radiation sections at future

Large area CMOS monolithic active pixel sensors for future colliders: IF3_IF7_Martin_Breidenbach-113 M. Breitenbach (SLAC)

High density 3D integration of LGAD sensors through wafer-to-wafer bonding: IF3_IF5_Simone_Mazza-175 S. Mazza (UCSC)

IF03 White Papers (part 3)

(5) Mechanics, lightweight materials, cooling (Mechanics)

- **Mechanics supports for future tracking detector:** Eric Anderssen (LBNL) IF03 presentation

(6) Novel Sensors for Particle Trackers (Novel)

- **Thin Film Detectors:** IF3_IF9_Jessica_Metcalfe-161: Jessica Metcalfe (ANL)
- **3D Diamond Detectors:** IF3_IF0_H_Kagan-130: H. Kagan (OSU)
- Silicon Sensors in 3D Technology: IF3_IF0_Seidel-198: S. Seidel (New Mexico)

(7) Non-silicon trackers: (Non-silicon)

- Gamma-ray Scintillator Fiber Tracker: IF3_IF2_Mazziotta-100: M. Nicola Mazziotta (INFN Bari)
- **Mu2e-II Tracker:** IF0_IF0-RF0_RF0_Daniel_Ambrose-094: D. Ambrose (Minnesota)
- Identification of TeV hadrons: Transition Radiation Detectors: IF0_IF0-043: M. Albrow (FNAL)
- Hedges (Purdue)

(8) Simulation Tools for Silicon Detector Developments (Simulation)

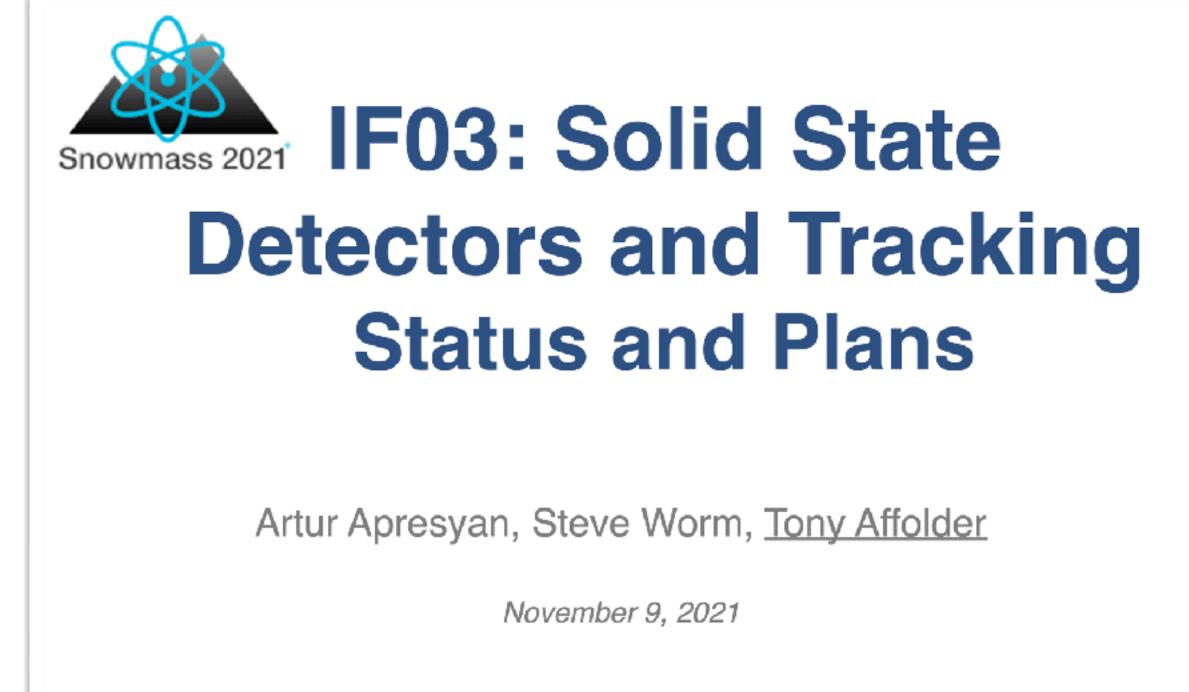
- Simulation tools and radiation damage Ben Nachman (LBNL) IF 03 presentation
- Simulation tools and radiation damage Timo Peltola (Texas Tech) IF03 presentation

DESY. Snowmass Community workshop on IF White Papers | Steve Worm | November 19, 2021

Light-weight and highly thermally conductive support structures for future tracking detectors: IF3_IF0_Jung-118: A. Jung (Purdue) **Future cooling:** Yadira Padilla upcoming IF03 meeting No longer involved ANYONE THAT COULD PROVIDE INPUTS HERE?

Beyond CMOS sensors, submicron pixels for the vertex detector: IF3_IF0_N._Fourches-107: N.T. Fourches (CEA-Saclay)

Exploration of charge particle tracking using InAs quantum dots in GaAs semiconductor matrix: IF3_IF0_Pavel_Murat_129: M.


Status and preparations for the contributed papers

Thursday Nov 11, 2021, 1:00 PM → 4:00 PM US/Central

Description	Zoom Link
1:00 PM → 1:10 PM	Intro Speakers: Artur Apresyan (Fermilab) , Steven Worm, Tony IF03-Meeting-Intro
1:10 PM → 1:20 PM	4D trackers and precision timing Speaker: Ryan Heller (Fermilab)
1:20 PM → 1:30 PM	Integration and Packaging Speaker: Simone Mazza (UC Santa Cruz)
1:30 PM → 1:40 PM	Exotic Solid-state Materials Speakers: Sally Seidel, Sally Seidel (University of New Mexic Content of New Mexicon) detectors.pdf
1:40 PM → 1:50 PM	Mechanics, lightweight materials, cooling Speakers: Andreas Jung (Fermilab), Eric ANDERSSEN (LI
1:50 PM → 2:00 PM	Simulation tools Speaker: Benjamin Nachman (LBNL) SiSimulation_snow
2:00 PM → 2:10 PM	Non-silicon trackers
2:10 PM → 2:20 PM	[Postponed] Monolithic integrated silicon detector Speakers: Caterina Vernieri (Fermi National Accelerator Labo

ny Affolder (UCSC- SCIPP) (ico) , Sally Seidel (University of New Mexico) LBNL) tors, CMOS (MAPs) oratory), Caterina Vernieri (SLAC)

🕓 10m 🕲 10m 🕓 10m 🕓 10m 🕓 10m 🕓 10m 🕓 10m 🕓 10m

DESY. Snowmass Community workshop on IF White Papers | Steve Worm | November 19, 2021

Snowmass Important Dates

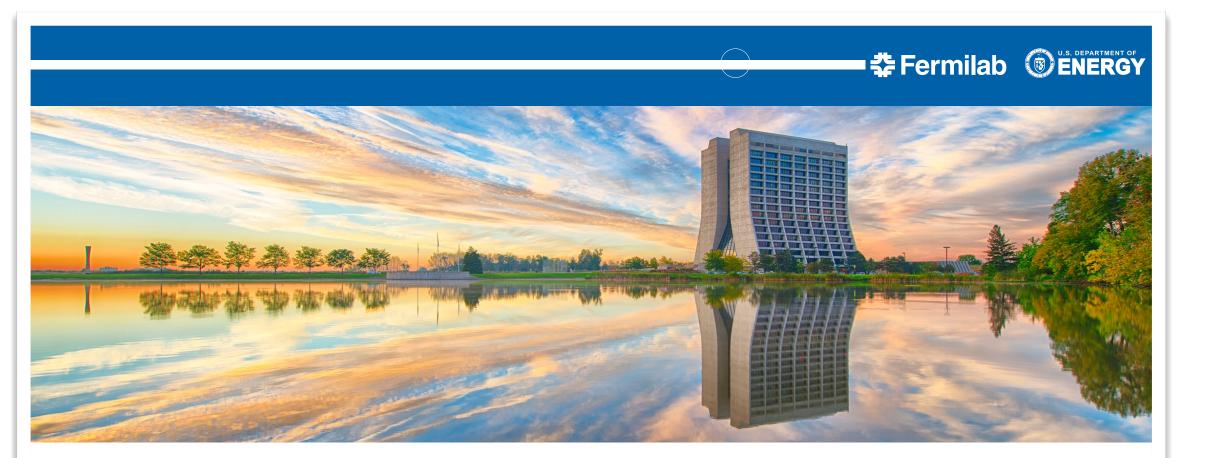
 White Paper submission to arXiv: no later than March 15, 2022. Late submissions and update likely not to be incorporated in the working group reports, but will be included in the Snown line archive documents.

- Preliminary reports by the Topical Groups due: no later than May 31, 2022.
- Preliminary reports by the Frontiers due: no later than June 30, 2022.
- Snowmass Community Summer Study (CSS): July, 2022 at UW-Seattle.
- All final reports by TGs and Frontiers due: no later than September 30, 2022.
- Snowmass Book and the on-line archive documents due: October 31, 2022.

White Paper Content, Templates, Topic Summaries

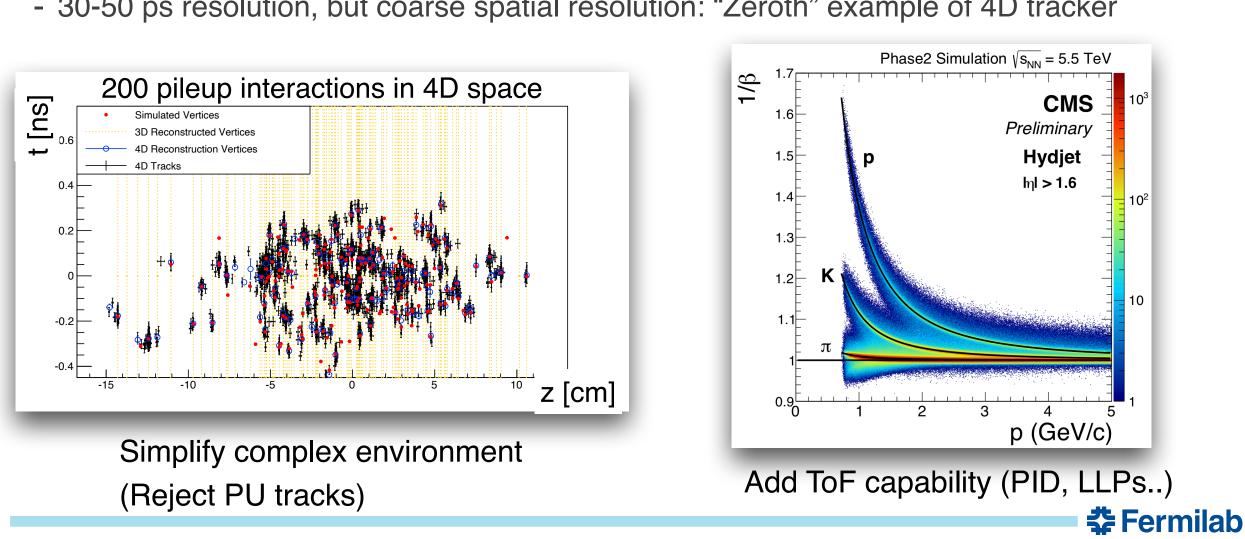
- The white papers should address the challenges that are being tackled, at least briefly summarize the physics motivation, show some recent results of R&D and lay out a roadmap for near- to middle-term R&D.
 - Our white papers with 3-4 LOI will be suggested length of 10-15 pages (with ~1 page executive summary)
 - We have asked the Intensity Frontier for a template for the White Papers

 On <u>https://snowmass21.org/submissions/start</u>, there is a Snowmass 2021 LaTex


 template.
 - The executive summaries will be used to build up our Topical Group Summary
- Our Topical Group Summary should try to give a bit of a global and more general overview of the whole area of silicon trackers, in addition to the more specific summaries of each white paper.
 - Suggested length of 5-10 pages (with 1-2 page executive summary for IF) report)

ates	are
mass	on-

4D Tracking (Heller)



4D trackers and precision timing

Valentina Cairo, Ryan Heller, Simone Mazza, Ariel Schwartzman **IF03 Solid State Detectors** November 11th, 2021

Motivation for 4D tracking

- ATLAS & CMS constructing timing layers for HL-LHC
- 30-50 ps resolution, but coarse spatial resolution: "Zeroth" example of 4D tracker

11/10/21 Ryan Heller

4D trackers and precision timing

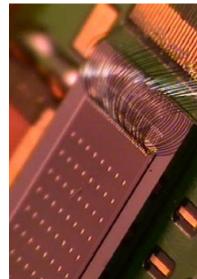
- White paper covering 4D trackers and precision timing
- LOIs #25, #37, #39
- Proposed structure
- Motivation for 4D tracking & requirements for future collider experiments
- FCC, ILC, EIC, muon collider
- Resolutions approaching 5-10 microns & 5-10 ps in most extreme cases
- Layout considerations
- Sensor technologies, current status, key challenges, and R&D roadmap
- Advanced LGADs (AC-LGADs, TI-LGADs, DJ, DG..) achieve excellent spatial resolution already
- Concentrate R&D effort on radiation hardness and sub 20 ps resolution (ultra thin sensors?)
- Electronics: challenges of density & power consumption, roadmap for future.

3D Integration (Mazza)

IF03 3D integration S. Mazza (UCSC), R. Lipton (FNAL), R. Patty (NHanced)

R. Lipton: https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF3_IF0_Ronald_Lipton-080.pdf S. Mazza: https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF3_IF5_Simone_Mazza-175.pdf R. Patti: https://indico.fnal.gov/event/45749/contributions/198237/attachments/135412/167907/NHanced Snowmass 10012020.pdf

DESY. Snowmass Community workshop on IF White Papers | Steve Worm | November 19, 2021


Status

- 3D integration still lacks a large scale research application
 - But recent efforts produced or will produce working prototypes of 3D integrated modules
- Pursued by FNAL since some time
 - E.g. "3D integration of sensors and electronics" https://doi.org/10.22323/1.309.0025
 - Comparison of performance of 3D integrated sensor vs bump bonded
- UCSC (new in the game) working with cactus material to test 3D integration and substrate engineering of LGADs
 - Funded through SBIR, expected results early next year 0

White paper structure

Proposed title: Integration and packaging

- Introduction to technology
 - Review of companies available with respective capabilities
- Advantages in respect to current available packaging
- Foreseen applications for 3D integration
 - Possible use in oncoming experiments (EIC, X-rays ...)
- Preliminary results (FNAL past results, possible UCSC near future results)
- Path for future development
- Conclusions

Novel Sensors (Seidel+Fourches)

A complete first draft has been written. At present this paper absorbs the full text of the following LoI's:

#156: https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF3 IF0 H Kagan-130.pdf #158: https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF3 IF0 N. Fourches-107.pdf #162: https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF3 IF0 Seidel-198.pdf #165: <u>https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF3_IF2_Jessica_Metcalfe-154.pdf</u>

Structure of the paper:

9 pages long

Page 1 – Author list and abstract

Page 2 – I. Introduction, II. Silicon Sensors in 3D Technology (Boscardin, Dalla Betta, Hoeferkamp, Seidel, Sultan)

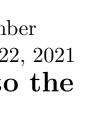
Page 3 – III. 3D Diamond Detectors (Kagan, Trischuk)

Page 4 – IV. Beyond CMOS: Submicron Pixels for Vertexing (Fourches, Renard, Barbier)

Page 5 - V. Thin Film Detectors (Kim, Metcalfe, Sumant)

Page 6 – Thin Film, continued

Page 7 – VI. Conclusion, References

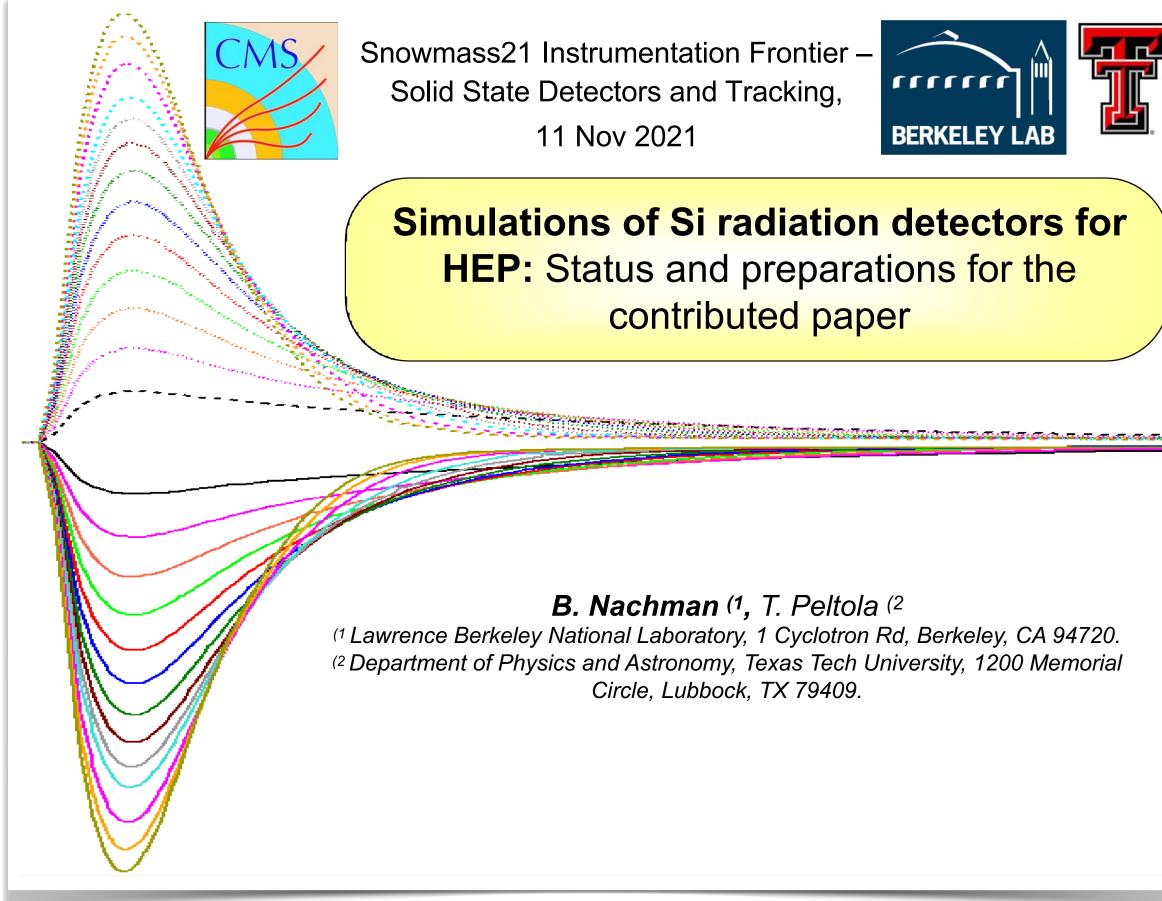

Pages 8-9 – References, continued

	Pub Number
1 2	October 22, 2021 Novel Sensors for Particle Tracking: A Contribution to the Snowmass Community Planning Exercise of 2021
3	M.R. HOEFERKAMP, S. SEIDEL
4	Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, US.
5	S. Kim, J. Metcalfe, A. Sumant
6	Physics Division, Argonne National Laboratory, Lemont, IL, USA
7	H. KAGAN
8	Department of Physics, Ohio State University, Columbus, OH, USA
9	W. TRISCHUK
.0	Department of Physics, University of Toronto, Toronto, ON, Canada
1	M. Boscardin
2	Fondazione Bruno Kessler, Trento, Italy
.3	GF. Dalla Betta
.4	Department of Industrial Engineering, University of Trento, Trento, Italy
5	D.M.S. Sultan
.6	Trento Institute for Fundamental Physics and Applications, INFN Trento, Trento, Italy
7	N.T. FOURCHES
8	CEA-Saclay, Université Paris-Saclay, Paris, France
9	C. Renard
20	CNRS-C2N, Université Paris-Saclay, Paris, France
1	A. BARBIER
2	CEA-Iramis, Université Paris-Saclay, Paris, France
3	ABSTRACT
24	Four contemporary technologies are discussed in the context of their poten-
25	tial roles in particle tracking for future high energy physics applications. These
6	include sensors of the 3D configuration, in both diamond and silicon, submicron-
27	dimension pixels, and thin film detectors. Drivers of the technologies include radiation hardness, excellent position and vertex resolution, simplified integra-
28 29	tion, and optimized power, cost, and material.
80	
1	

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

32

35



Simulation Tools (Nachman)

Proposed report outline

Part I: Existing Tools

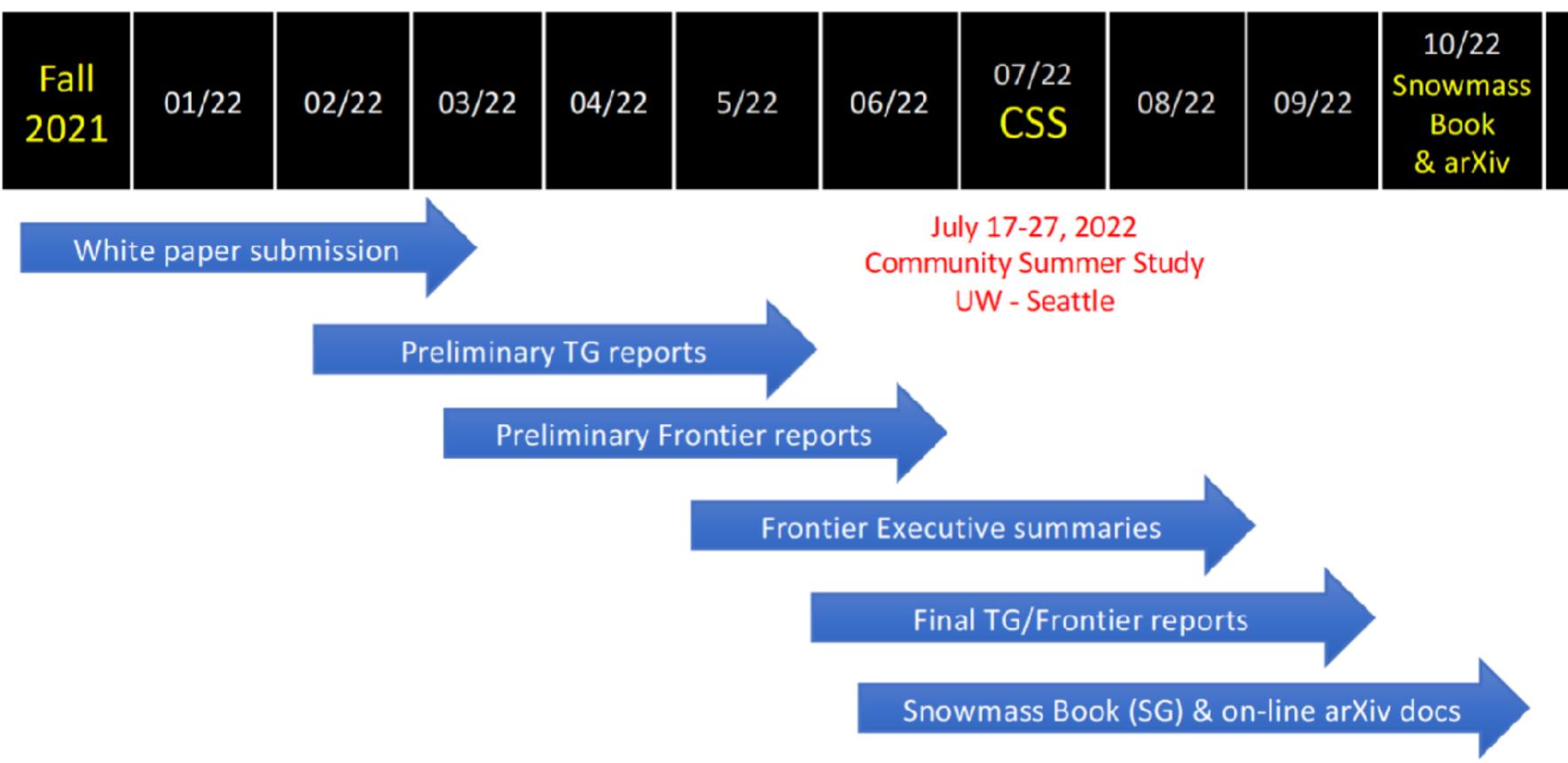
- Models for single quantities
 - Annealing (e.g. Hamburg Models)
 - Straggling (e.g. Bichsel Model)
- TCAD simulations for detector properties
 - Many multitrap models for radiation damage
 - Lighter-weight alternatives: TRACS and Weightfield2
- Testbeam
 - Pixelav
 - Allpix²
- Full detector systems
 - ATLAS approach (modified digitization)
 - CMS approach (efficiency corrections)
 - LHCb approach (tuned charge transport)


Proposed report outline

Part II: Challenges and Needs

- Unified radiation damage (TCAD) and annealing model
- Prescription for uncertainties in TCAD models
- Measurements of damage factors (many of the inputs in the RD50 database are based on simulation or less)
- Update to basic silicon properties? https://cds.cern.ch/record/2629889
- How to deal with proprietary software and device properties?
- Feedback between full detector systems and per-sensor models
- Extreme fluences of future colliders

Thank you


Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Steven Worm Group Lead, Astroparticle Detectors steven.worm@desy.de

Snowmass Timelines

A. Apresyan, S. Worm, T. Affolder 11/11/21 14