Test procedures

- I. Xiotidis
- HPgTPC Electronics meeting
- Date: 2/11/21

Board layout

- Two type of tests available:
 - Hardware component tests (serial links, power distribution, etc.)
 - Firmware component tests

Hardware tests overview

- We can test various hardware compoents with the two available test boards in the lab
 - Power board (made by Duncan): Allows to power 4 RX/TX lines with DC voltage over RJ45
 - Xilinx evaluation card (Commercial): Hosts same FPGA family and transceiver type as the final boards
 - Any objection to move test set-up from FC7 to the eval. card?
- Proposed hw tests:
 - The TIP <-> AGGR link contains a number of components:
 - GTH transceivers from Xilinx
 - Ethernet cable (long distance) + DC signal
 - Vessel feedthrough
 - Custom serial transceiver circuit (e.g. bias network, ESD diodes, etc.)
 - AGGR<-> FEC links from FPGA fabric (HP/HR banks)
 - Paired in groups of two for configuration and reset
 - Rate much smaller than serial links
 - Do we want to test the FEC communication links?
 - We cannot use Eval card out of the box
 - Extra adapter is required
 - Eye scans with oscilloscope (performed from Johan in the past)
 - Any other component we can test?

Testing signal integrity on serial transceivers

- Current hardware allows 4xGTH transceiver tests via the FMC connector
 - Power can be provided externally with DC power supply
 - FMC extender card allows setup to be tested in the magnetic field (what is the status for that?)
 - 4-5x ethernet cables available to be tested
 - 1x feedthrough for high pressure
- What tests are available (@1Gbps):
 - Tune the GTH transceivers with sweap scans to derive base configuration
 - 4x parameters with all combinations can be changed (Swing, Pre/Post cursor, RX termination)
 - Equalization network (LPM-short distance vs DFE-long distance)
 - Cable standard (CAT5/6) and length + feedthrough
 - Cable + DC power
 - Test impedance elements (currently air-cored inductors)
 - Anything else?

Current scan status

Transceiver parameters: * Line rate: 1Gbps * Pre/Post cursor: 0dB * TX Swing: 0.995 V * RX Term: ?

Wrote ROOT based macro to automated scan procedure to avoid Vivado

Firmware tests

• Current focus on TIP firmware implementation in kcu105 card

- In case FPGA parts are late can we use this as back-up TIP?
 - What about aggregators?
- Firmware can be separated in three high level blocks:

- Each component can be tested with evaluation card initially
 - Almost same boxes for Aggregator (what about the LArPIX?)

Interfacing block

- Contains all required I/Fs decoders for data processing
- Block break down:
 - SiTCP: TCP core from beebeans
 - Interfaces network with processing logic
 - Current status: Implementation to kcu105 completed -> ping operation works but ~20% of packages are lost (under investigation)
 - Testing:
 - Send data to fifo and read back
 - Saturate link to measure throughput (p2p connection)
 - Anything else?

Interfacing block

- Contains all required I/Fs decoders for data processing
- Block break down:
 - Aurora 8b/10b core: Standard IP-block from Xilinx (well documented)
 - Interfaces Aggregators with processing logic
 - Current status: Configured via Vivado GUI, include In-System IBERT core
 - IBERT core (resources permitted) will remain also in final design to allow online integrity tests for link quality
 - Testing:
 - After transceiver configuration derived from hardware tests repeat same eye scans with data from FIFOs
 - Not much internal stuff to be checked

Interfacing block

- Contains all required I/Fs decoders for data processing
- Block break down:
 - Slow control I/F: Masters for board configuration interfaces (SPI,I2C,etc.)
 - Interfaces with control/monitoring logic
 - Current status: Not much developed, implementations of I2C/SPI/PMbus masters are available and will be used
 - Testing:
 - Once hardware components available tests master behaviour with data from the con/mon path
 - Anything else?

Aggregation logic

- Main data path block:
 - Retrieves data from 9x Aurora links
 - 8-bit@62.5MHz
 - Buffering with spy buffers:
 - RAM+FIFO (possibly): FiFo will buffer the data to enter the aggregation logic block, RAM will keep copy to be accesed from control/monitoring interface
 - Aggregation logic: TBD
 - Higher clock frequency
 - Buffering with normal buffer (don't think we need data copy)
 - Transmitts to 1x ETH link
 - 8-bit@125MHz

• Preliminary layout

Aggregation logic

- Current status: Identified spy buffer from past ATLAS project
 - Will ask around also if CMS has something similar (more support within the group)
- Testing:
 - Initially one aggregator will be assumed to setup proper handshaking
 - Interface with control/monitoring logic to identify needed information
 - Duplicate for 2x aggregators (design needed for test beam)

• Preliminary layout

Control/Monitoring logic

- Block required for configuring the system and monitor the status
- Current status: Haven't thought much about implementation yet
 - Setup meeting with Alex T. to discuss data formatting for DAQ I/F
- Testing: TBD

Summary

- Hardware tests:
 - Check signal integrity of all Aggregator2TIP links in as close as possible conditions
 - Identify maximum cable length
 - DC voltage limit
 - Critical components
 - Missing still LArPIX timeline
 - Rate is much smaller than Aurora link, do we want to test the connector?
- Firmware tests:
 - SiTCP evaluation in progress with first loopback tests over TCP
 - Aurora links evaluated once hardware tests define baseline configuration for GTH
 - Aggregation logic requires a bit more thinking for details
 - Con/Mon: Not much developed but about to take up
- Am I missing anything?