Muon Test Facilities

Diktys Stratakis Fermi National Accelerator Laboratory Derun Li Lawrence Berkeley National Laboratory

2021 AF1 community meeting November 23, 2021

Outline

- Muon Collider (MC) overview
- Proposed MC parameters under Muon Accel. Program
- MC challenges
- Summary of past accomplishments
- Technology needs
- Current status
- Concluding comments and outlook of future work

Muon Collider (MC) has a smaller footprint

- Accelerator Physics and technology challenges associated with MC:
 - Muons are ~ 200 times heavier than electrons
 - Allow for circular collider due to much less synchrotron radiation energy, impossible for e⁻e⁺ circular colliders at TeV scale and therefore smaller footprint.
 - Muons decay and are produced with a very large transverse emittance
 - Accelerator beam physics challenges;
 - Requires fast beam manipulation technologies (target and capture, cooling high gradient NC and SRF acceleration, SC magnets and etc.)
 - Must deal with decay particles and neutrino radiation.

A MC would offer a precision probe of fundamental interactions, in a smaller footprint as compared to electron or proton colliders

MC accelerator components

- High power (MW scale) proton driver
 - Considered 8 GeV H- SRF linac at 2-4 MW
- Pre-target accumulation & compression rings for 2 ns bunches
- Target & capture solenoid to create 200 MeV secondaries
 - Considered liquid Mercury targets at 20 T fields
- Ionization cooling line to reduce 6D phase-space by several orders of magnitude
 - Considered km scale channels with ~30 T magnets at the end
- Acceleration system to bring the beam at TeV scale energies
 - For multi-TeV scale, considered rapid cycling synchrotrons using SRF
- A collider ring where counter propagating muons collide

Current status

- Between 2011-2016 MAP collaboration was formed to address key feasibility issues of a Muon Collider. Leveraged prior decades of study to identify a design path. Focused on proton-driver based solution
- Meantime, increasingly growing interest in muon colliders from particle physics community, especially in Europe. Formation of International Muon Collaboration on the works.
- In Europe, CERN Council has charged the Laboratory Directors Group to develop the Accelerator R&D Roadmap for the next decade.
 - Three community meetings organized with the goal to define the needed Muon Collider R&D with deliverables and demonstrators
- From the US side, a Muon Collider Forum has been formed that meets monthly
 - AF is actively involved in the upcoming Snowmass process with the particle physics community to define the needed muon collider R&D.

Muon Collider parameters under MAP

Parameter	Units	Higgs		Multi-TeV		
CoM Energy	TeV	0.126	1.5	3.0	6.0	$= \underbrace{f_{col} \cdot n_{\mu_{+}} \cdot n_{\mu_{-}} \cdot \beta \cdot \gamma}_{f_{col}}$
Avg. Luminosity	$10^{34} cm^{-2} s^{-1}$	0.008	1.25	4.4	12 ~	$= 4\pi \left(\varepsilon_{\chi,n} \cdot \beta_{\chi}^{*}\right)^{1/2} \cdot \left(\varepsilon_{\chi,n} \cdot \beta_{\chi}^{*}\right)^{1/2}$
Beam Energy Spread	%	0.004	0.1	0.1	0.1	
Higgs Production $/10^7$ sec		13'500	37'500	200'000	820'000	
Circumference	km	0.3	2.5	4.5	6	
No. of IP's		1	2	2	2	
Repetition Rate	$_{\rm Hz}$	15	15	12	6	
$\beta^*_{x,y}$	cm	1.7	1	0.5	0.25	
No. muons/bunch	10^{12}	4	2	2	2	
Norm. Trans. Emittance, $\varepsilon_{\mathrm{TN}}$	$\mu\mathrm{m} ext{-rad}$	200	25	25	25	
Norm. Long. Emittance, $\varepsilon_{\rm LN}$	$\mu\mathrm{m} ext{-rad}$	1.5	70	70	70	
Bunch Length, $\sigma_{\rm S}$	cm	6.3	1	0.5	0.2	
Proton Driver Power	$\mathbf{M}\mathbf{W}$	4	4	4	1.6	
Wall Plug Power	\mathbf{MW}	200	216	230	270	

Beam components are designed to realize COM energy and Luminosity

Recent MC parameters under discussions at Snowmass MC forum

Target integrated luminosities

\sqrt{s}	$\int \mathcal{L} dt$
$3 { m TeV}$	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
$14 { m TeV}$	$20 {\rm ~ab^{-1}}$

Reasonably conservative

- each point in 5 years with tentative target parameters
- FCC-hh to operate for 25 years
- Aim to have two detectors
- But might need some operational margins

Note: focus on 3 and 10 TeV Have to define staging strategy

Tentative target parameters, scaled from MAP parameters				
Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
Ν	1012	2.2	1.8	1.8
f _r	Hz	5	5	5
P _{beam}	MW	5.3	14.4	20
С	km	4.5	10	14
	Т	7	10.5	10.5
ε	MeV m	7.5	7.5	7.5
σ _E / E	%	0.1	0.1	0.1
σ _z	mm	5	1.5	1.07
β	mm	5	1.5	1.07
ε	μm	25	25	25
σ _{x,y}	μm	3.0	0.9	0.63

Snowmass process to give feedback on this

- Continuing Muon Accelerator R&D requires a strong Physics case on MC and endorsement from Particle Physics Community;
- Future close collaboration between Accelerator and Particle Physics community is key;
- R&D efforts and funding likely after next P5.

Key R&D Challenges for a MC

	Issues	Current status
Target	 Multi-MW Targets High Field, Large Bore Capture Solenoid 	 Ongoing >1 MW target development Challenging engineering for capture solenoid
Front End	 Energy Deposition in Front-End Components RF in Magnetic Fields (see Cooling) 	Current designs handle energy deposition
Cooling	 RF in Magnetic Field High and Very High Field SC Magnets Overall Ionization Cooling Performance 	 MAP designs use 20 MV/m → 50 MV/m demo > 30 T solenoid demonstrated for Final Cooling Cooling design that achieves most goals
Acceleration	 Acceptance Ramping System Self-Consistent Design 	 Designs in place for accel to 125 GeV CoM Magnet system development needed for TeV-scale Self-consistent design needed for TeV-scale
Collider Ring	 Magnet Strengths, Apertures, and Shielding High Energy Neutrino Radiation 	 Self-consistent lattices with magnet conceptual design up to 3 TeV > ~ 5 TeV - v radiation solution required
MDI/Detector	 Backgrounds from μ Decays IR Shielding 	 Further design work required for multi-TeV. Initial multi-TeV promising

Slide from Mark Palmer (MAP Director)

Highlights of past accomplishments

- Targetry R&D and proof-of-principle demonstration at CERN
- Demonstration of operation of normal conducting (NCD) RF cavities in the presence of strong magnetic fields
- Demonstration of transverse ionization cooling by the International Muon Ionization Cooling Experiment (MICE) hosted by RAL
- Muon emittance exchange demonstrated at the Fermilab Muon Campus and MICE
- Superconducting magnet development suitable for Muon Colliders
- End-to-end muon ionization cooling channel models that meet the MC requirements

Muon Collider Forum

- The Snowmass Energy, Theory and Accelerator Frontier Conveners created a <u>Muon Collider Forum</u> to provide input to Snowmass on the MC, based on the high level of interest.
- The intention is to not compete with the European effort but to have a US driven component.
 Forum coordinators

Name

- Monthly meetings with field experts
- More information:
- https://snowmass21.org/energ y/muon_forum

Institution	email	frontier
Lawrence Berkeley Lab	dli[at]lbl.gov	AF

Derun Li	Lawrence Berkeley Lab	dli[at]lbl.gov	AF
Diktys Stratakis	Fermilab	diktys[at]fnal.gov	AF
Kevin Black	University of Wisconsin	kblack[at]hep.wisc.edu	EF
Sergo Jindariani	Fermilab	sergo[at]fnal.gov	EF
Fabio Maltoni	University of Bologna/CERN	maltoni.fabio[at]gmail.com	TF
Patrick Meade	Stony Brook University	patrick.r.meade[at]gmail.com	TF

Muon Collider Forum activities

- Delivery of a White paper for Snowmass
- Accelerator experts participate in the Snowmass process with the particle physics community to define the needed MC R&D
- The accelerator white paper goals are:
 - Highlight recent developments on accelerator technology that could lead to a Muon Collider
 - Report on the accelerator R&D needs
 - Discuss a timeline and siting options (including US sites)
 - Planned a dedicated accelerator workshop in January 2022

Muon Collider - a Dream Machine for Particle Physics.

November 15, 2021

Abstract

1 Introduction

1.1 Big Physics Questions , Fabio/Patrick

General introduction with big questions in particle physics and how a Muon Collider can help address them. Difference wrt the last Snowmass when 13 TeV LHC was just about to start and HL-LHC was not a project.

1.2 Recent Developments in Theory , Fabio/Patrick Overview of recent advancements in theory since the last Snowmass.

1.3 Recent Developments in Accelerator , Derun/Diktys Overview of recent advancements in accelerator technology since the last Snowmass

1.4 Recent Developments in Detectors , Kevin/Sergo Overview of recent advancements in detector technology since the last Snowmass.

1.5 Global Efforts and Plans , Derun/Diktys Briefly describe past (MAP), present (IMCC), etc

1.6 Working Assumptions , Kevin/Sergo Energy and luminosity assumptions and how they were chosen.

2 Physics Highlights Fabio/Patrick

2.1 Higgs Boson Higgs couplings, total width, mass, triliear and quartic couplings

Exploring site fillers (in progress)

- Fermilab site filler study:
 - 5 TeV is relatively accessible
 - 10 TeV is a stretch goal. <u>It requires 16</u> <u>T dipoles and 4 T</u> <u>rapid cycling</u> <u>magnets</u>
 - Preliminary results.
 More studies in progress.

~4 TeV (2 x 2) Muon Collider (~2005)

- Muon Collider •2 <u>TeV</u> ring (~8T magnets)
- •RLA accelerator
 ~18 turns

 2km linacs -50 GeV each
 ~30 MV/m rf
 Arcs are ~8T magnets each

 >Not quite site filler
 •Easily expand to 2.5x2.5
- •(5 <u>TeV</u>)
- Double gradients, B_{max}
 10 <u>TeV</u> (5 x 5) (16 T 60 MV/m)

Slide from David Neuffer (Fermilab)

State of the art technology and future MC RF and magnets (in progress)

Conventional magnets

- ~ 2 Tesla
- Superconducting NbTi
 - Tevatron at Fermilab ~ 4 Tesla
 - LHC at CERN ~ 8 Tesla
- Superconducting Nb₃Sn
 - HL- LHC+ ~ 16 Tesla
- Pulsed magnets
 - Achieved of 20 T/s HTS record
 - +/- 2 Tesla peak
 - +/- 4 Tesla peak (needed)

- SRF technology
 - 17 MV/m (650 MHz for PIP-II)
 - 30+ MV/m (1.3 GHz ILC)
- Future advance
 - 40 ~ 50 MV/m \rightarrow 80+ MV/m (?)
- Pulsed NC RF
 - ~ 50 MV/m (805 MHz)
 - ~ 15 MV/m (201 MHz)
- NCRF in a strong magnetic field
 - 50 MV/m at 3 T (805 MHz)
 - Significant R&D needed

Slide from David Neuffer (Fermilab)

Areas of further research

- Magnet technology: High field, multi-Tesla SC magnets for muon production, cooling, acceleration and collision.
- RF technology: High gradient, robust normal conducting rf cavities for cooling and power-efficient superconducting rf for acceleration.
- Lattice designs: Shorter cooling channel designs, end-to-end lattice designs for acceleration towards TeV-scale energies, collider ring lattice designs for > 3 TeV CoM
- Detector technology: Concepts that can sustain muon decay background for multi-Tev energies
- Alternative concepts:
 - 45 GeV $e^+e^- \rightarrow muons$

Low EMmittance Muon Accelerator (LEMMA): 10⁷¹ µ pairs/sec from e'e⁻ interactions. The small production emittance allows lower overall charge in the collider rings – hence, lower backgrounds in a collider detector and a higher potential CoM energy due to neutrino radiation.

Concluding comments and Outlook

- Increasingly growing interest in muon collider from particle physics community, especially in Europe;
- Joining the international muon collider collaboration efforts under discussions
 - As individual institute or coordinated US efforts?
 - Leveraging and resuming previous US MAP R&D?
- A breakthrough towards a proton driven MC through MICE:
 - A successful muon cooling demonstration, but took nearly two decades;
 - Future R&D should take advantages of existing infra-structures and resources of collaboration institutes.
- Actively participate in the upcoming Snowmass process with particle physics community to define the needed muon collider R&D