

RF2: weak decays of strange and light quarks

Evgueni Goudzovski (University of Birmingham, UK)

Emilie Passemar (Indiana University)

- ❖ This talk covers the general structure of the RF2 report, and the kaon, hyperon and charged pion sections.
- **CKM** first-row unitarity tests and rare $\eta^{(\prime)}$ decays are covered in Emilie's talk.

The RF2 physics case

- Flavor physics experiments probe both very high mass scales, and feebly interacting hidden sectors.
- \Leftrightarrow RF2: precision measurements of kaon, hyperon, π^+ and $\eta^{(\prime)}$ decays.
 - ✓ CKM parameter measurements and unitary tests; symmetry tests; lepton flavor/number conservation tests; lepton universality tests.
 - ✓ Heavy new physics: sensitivity up to the PeV mass scale.
 - ✓ Hidden sectors: leading sensitivity below the GeV mass scale.
- Much experimental activity:
 - ✓ Ultra-rare kaon decays at NA62 and KOTO (+ future projects);
 - ✓ CPV in hyperon decays at BESIII (+ future super charm-tau factories);
 - ✓ kaon and hyperon decays at LHCb;
 - ✓ LFU and V_{ud} in pion decays at PIONEER;
 - \checkmark Symmetry tests at η factories: JEF; REDTOP proposal.
- Significant advances in theory and lattice QCD: crucial for progress.

Medium-scale initiatives (many centered in Europe and Asia): powerful physics insights, relatively short time scales, superb training opportunities, modest investment.

White papers considered

White papers considered for the TG report:

```
(WP1) Rare kaon decays: theory [arXiv:2203.09524]
```

- (WP2) Kaon decays: lattice computations [arXiv:2203.10998]
- (WP3) Kaon decays: experiments [arXiv:2204.13394]
- (WP4) Hidden sectors at kaon and hyperon factories [arXiv:2201.07805]
- (WP5) CPV in hyperon decays at BESIII and SCTF [arXiv:2203.03035]
- (WP6) Rare π^+ decays: PIONEER at PSI [arXiv:2203.05505]
- (WP7) Rare $\eta^{(\prime)}$ decays: REDTOP [arXiv:2203.07651]

Further inputs for the TG report:

- ❖ The 23 LoIs, plus an update from JEF.
- CKM first row unitarity: no white papers submitted; the topic is still fully considered based on recent reviews.

TG report structure

Current report structure:

- (2.1) Introduction: the physics case
- (2.2) Kaon decays [theory overview, NA62, KOTO, LHCb, future projects]
- (2.3) Hyperon decays [BESIII, super tau-charm factories, LHCb]
- (2.4) Charged pion decays [PIONEER]
- (2.5) $\eta^{(\prime)}$ decays [theory overview, JEF, REDTOP]
- (2.6) CKM first row unitarity [theory + experiment overview]
- (2.7) Summary

Status of the draft:

- ❖ Sections (2.1), (2.7): drafts written.
- ❖ Sections (2.2)-(2.4): draft #1 shared with authors of (WP1)-(WP6) and the Frontier conveners on May 6th.
- Section (2.5): draft #0 shared with conveners.
- ❖ Feedback from authors of (WP1), (WP2), (WP3), (WP5), (WP6), and from the conveners, received and implemented.
- ❖ Sections (2.5), (2.6): first draft still to be finalized.
- ❖ Report draft #2 draft to be distributed to WP authors: May 20th.

$K \rightarrow \pi \nu \nu$ in the Standard Model

SM: Z-penguin and box diagrams

- "Golden modes": extremely rare decays, precise SM predictions.
- Aaximum CKM suppression: $\sim (m_t/m_W)^2 |V^*_{ts}V_{td}|$.
- No long-distance contributions from amplitudes with intermediate photons.
- \clubsuit Hadronic matrix element extracted from measured $BR(K_{e3})$ via isospin rotation.

Mode	Expected BR _{SM}	Experimental status
$K^+ \rightarrow \pi^+ \nu \nu$	(8.60±0.42)×10 ⁻¹¹	(10.6±4.0)×10 ⁻¹¹ (NA62 Run 1)
$K_L \rightarrow \pi^0 \nu \nu$	(2.94±0.15)×10 ⁻¹¹	BR<300×10 ⁻¹¹ at 90% CL
		(KOTO 2015 data)

Standard Model BR: a new $|V_{cb}|$ and γ -independent determination. [Buras and Venturini, arXiv:2109.11032]

$K \rightarrow \pi \nu \nu$ and new physics

- ❖ Correlations between BSM contributions to K⁺ and K_L BRs. [JHEP 11 (2015) 166]
- Need to measure both K⁺ and K_L to discriminate among BSM scenarios (NB: within SM, this allows for a clean the β angle measurement).
- \Leftrightarrow Correlations with other observables (ϵ'/ϵ , ΔM_K , B decays). [JHEP 12 (2020) 97]

- ❖ Green: CKM-like flavour structure
 - ✓ Models with MFV
- Blue: new flavour-violating interactions in which LH or RH couplings dominate
 - ✓ Z' models with pure LH/RH couplings
- Red: general NP models without the above constraints
- The Grossman-Nir bound: a model-independent relation

$$\frac{\mathrm{BR}(K_L \to \pi^0 \nu \bar{\nu})}{\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})} \times \frac{\tau_+}{\tau_L} \le 1$$

Kaons: other opportunities

- ❖ Direct and indirect CP violation in $K^0 \rightarrow \pi\pi$ decays (ϵ, ϵ') , and the $K_L K_S$ mass difference (ΔM_K) [no experiments planned]
 - ✓ Improving capabilities of lattice QCD to provide accurate SM predictions: opportunities for discovery of new physics.
 - ✓ SM precision on ε'/ε can match that of the experiment within a decade, motivating a new measurement.
- \clubsuit Measurement of V_{us} with $K \rightarrow \pi \ell \nu$ decays. [no experiments planned]
 - √ V_{us} accounts for 50% of the uncertainty in the first-row CKM unitarity test.
 - ✓ Uncertainty in V_{us} : equal contributions from experiment $[BR(K \to \pi \ell \nu)]$ and theory [decay constants f_K/f_{π} , form-factor $f_+(0)$].
 - ✓ Improvements on lattice QCD expected, motivating new measurements.
- Lepton universality tests, lepton flavor and number conservation tests.
 - ✓ BR(K⁺→(π⁰)e⁺ν)/BR(K⁺→(π⁰)μ⁺ν), BR(K⁺→π⁺e⁺e⁻)/BR(K⁺→π⁺μ⁺μ⁻); searches for K⁺→π⁺(π⁰)ℓℓ, K_L→(π⁰)(π⁰)μe, K_L→2μ2e, ...
- ❖ Searches for light hidden sectors [see RF6]: unique sensitivity due to large datasets and suppression of the kaon decay width.

NA62 (Run 1): the $K^+ \rightarrow \pi^+ \nu \nu$ signal

$K^+ \rightarrow \pi^+ \nu \nu$: historical perspective

8

NA62 Run 2: 2021-2025

- * The technique is firmly established. Run 2: $K^+ \rightarrow \pi^+ \nu \nu$ measurement in a low-background, high-acceptance regime, at O(10%) precision.
- Modifications of the setup for background reduction:
 - ✓ fourth kaon beam tracker (GTK) station;
 - ✓ rearrangement of beamline elements around the GTK achromat;
 - ✓ new veto hodoscopes upstream of the decay volume;
 - ✓ an additional veto counter around downstream beam pipe.
- ❖ Improved trigger: beam intensity increased by ~30% wrt Run 1.
- \diamond Collection of 10^{18} pot in up to 90 days in beam dump mode is foreseen.

E. Goudzovski / Cincinnati, 16 May 2022

Long-term plans at CERN

- SPS fixed target runs planned to accompany LHC running up to 2038.
- An opportunity for an integrated kaon programme at the SPS to pin down new physics in kaon decays.
- ❖ Measurements of both K⁺ and K_L rare decays: a clear insight into the flavour structure of new physics.
- \clubsuit Beam intensity up to $\times 6$ wrt NA62 (to 1.3×10^{19} pot/year).
- (1) An in-flight $K^+ \rightarrow \pi^+ \nu \nu$ experiment.
 - ✓ Goal: 400 SM events with S/B≫1, ~5% precision.
 - ✓ Challenge: 20 ps time resolution for key detectors
 (aligned with HL-LHC and future flavor/dark matter experiments).
- (2) An in-flight $K_L \rightarrow \pi^0 vv$ experiment (KLEVER).
 - ✓ Goal: 60 SM events with S/B~1, ~20% precision.
- (3) An intermediate experiment: rare K_L decays with charged particle detection: $K_L \rightarrow \pi^0 \ell^+ \ell^-$ as the main goal; K_L beam characterization.

KOTO: the 2016-18 result

[PRL 126 (2021) 121801]

Single-event sensitivity:

$$BR_{SES} = (7.2\pm0.7)\times10^{-10} (=25\times BR_{SM})$$

Main backgrounds:

source		Number of events
K_L	$K_L \rightarrow 3\pi^0$	0.01 ± 0.01
	$K_L \rightarrow 2\gamma$ (beam halo)	0.26 ± 0.07 a
	Other K_L decays	0.005 ± 0.005
K^\pm		0.87 ± 0.25 $^{\mathrm{a}}$
Neutron	Hadron cluster	0.017 ± 0.002
	$\operatorname{CV} \eta$	0.03 ± 0.01
	Upstream π^0	0.03 ± 0.03
total		1.22 ± 0.26

- ♦ Number of K_L decays (from $K_L \rightarrow 2\pi^0$): $N_K = 6.8 \times 10^{12}$.
- Expected SM signal: 0.04 events, a factor 1.8 larger than for 2015 data.
- Estimated background: 1.22±0.26 events (mainly from K[±] decays).
- Three candidate events observed in the signal region.
- The strongest limit is still from the 2015 data: $BR(K_L \to \pi^0 vv) < 3.0 \times 10^{-9}$.

11

KOTO up to 2025

Need ~20 times improvement in background rejection to obtain S/B ≈ 1, assuming SM signal rate.

Upstream charged-particle veto: prototype installed for 2020 run, final version available in 2021.

✓ Reduction of K[±] background.

The 2019-21 dataset is twice as large as the 2016-18 dataset, analysis is in progress.

- ❖ KOTO is restarting in the fall of 2022.
- \clubsuit Beam power to be gradually increased (60 \rightarrow 100 kW).
- ❖ Expect to reach the SM single-event sensitivity O(10⁻¹¹) by 2025, operating in a low-background regime.

KOTO long-term plan: step-2

To reach O(100) signal events:

- proton beam power above 100 kW;
- new neutral beamline at 5°
 with <p(K_L)> = 5.2 GeV/c;
- larger fiducial decay volume;
- complete rebuild of the detector;
- hadron hall extension required: a joint project with nuclear physics community;
- design work is in progress.

* *1.2 GeV/c * ~1.0 better Dp/p * ~5.2 GeV/c K⁰ Good n/K * *1.1 GeV/c * ~10⁶ K/spill * ** * *1.1 GeV/c * ~10⁶ K/spill * ** * *1.1 GeV/c * ~10⁶ K/spill * ** * *1.2 GeV/c * ** * *1.1 GeV/c * ** * *1.1 GeV/c ** * *1.2 GeV/c K⁰ * *Good n/K * ** * ** * *10 better Dp/p * ~5.2 GeV/c K⁰ * *Good n/K * ** * ** * ** * ** * ** * *10 GeV/c separated pion, kaon, pbar * ~10⁷/spill K⁻, pbars * ** * *10 GeV/c separated pion, kaon, pbar * ~10⁷/spill K⁻, pbars * ** * *10 GeV/c separated pion, kaon, pbar * ~10⁷/spill K⁻, pbars * ** * * * * *

< 2.0 GeV/c

1.8x108 pion/spill

5 deg extraction

Expected step-2 sensitivity:

- ❖ Signal acceptance: 5× KOTO step-1.
- ♦ 60 SM events with S/B~1
 at 100 kW beam power (3×10⁷ s).
- ❖ Aiming at ~ 5σ SM K_L $\rightarrow \pi^0 vv$ discovery.

$K^+ \rightarrow \pi^+ \nu \nu$: experimental projections

- ❖ Measurements of K⁺→ π ⁺ $\nu\nu$ and K_L→ π ⁰ $\nu\nu$ rates to ~10% precision: model-independent tests for new physics at the O(100 TeV) scale.
- ❖ A possibility to find a clear evidence for deviation from the SM.
- Correlations with other observables will play a crucial role.

K_S decays at LHCb

- Short fiducial volume: programme mostly focused on K_s and hyperon decays.
- ★ Kaon production at LHCb:
 10¹³ K_S/fb⁻¹ in acceptance.
- A broad rare decay programme:

$$K_S \rightarrow \mu^+ \mu^ K_S \rightarrow \pi^0 \mu^+ \mu^ K_S \rightarrow \pi^+ \pi^- e^+ e^ K_S \rightarrow \pi^+ \pi^- \mu^+ \mu^-$$
 (?)
 $K_S \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

* A recent Run1+2 result: $\mathcal{B}(K_S \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$ [PRL 125 (2020) 231801]

LHCb aims to reach ultimately the SM BR of $(5.2\pm1.5)\times10^{-12}$.

CPV in hyperon decays

- Hyperon decays: complementary to kaon physics, different sensitivity to BSM interactions.
- CP violation in hyperon decays is yet to be established.
- **BESIII:** CPV asymmetry measurements with spin-entangled hyperonantihyperon pairs (Λ, Σ, Ξ) produced at the J/ψ resonance.
- BESIII: most precise measurement to date of direct CPV asymmetry of Λ/anti-Λ decay parameters from 10¹⁰ J/ψ events (dataset 2017–19), 0.5% accuracy [arXiv:2204.11058]
- Next-generation J/ψ factories: improved statistical precision using longitudinally-polarized electron beams.
 CPV asymmetry predicted by the SM (~10⁻⁵) is within reach!
- ❖ Rare/forbidden hyperon decay program at BESIII and LHCb. An example [LHCb, PRL 120 (2018) 221803]:

$$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (2.2^{+1.8}_{-1.3}) \times 10^{-8}$$

Charged pion decays

- ❖ Lepton universality test: $R_{\mu e} = BR(\pi^+ \rightarrow e^+ \nu)/BR(\pi^+ \rightarrow \mu^+ \nu)$:
 - ✓ Early insight into the V-A structure of weak interactions.
 - ✓ Exceptional precision of the SM prediction: $R_{\mu e} = 1.2352(1) \times 10^{-4}$.
 - ✓ World average (mainly PIENU at TRIUMF): $R_{\mu e} = 1.2327(23) \times 10^{-4}$.
- ❖ PIONEER (Phase-I) approved at PSI, physics starting in ~2029.
 - \checkmark Goal: matching the SM precision on R_{ue} ; 1 PeV scale new physics.
 - ✓ Stopped π^+ at high rate (300 kHz), focus on reduction of systematics.
 - ✓ Detectors: highly-segmented LGAD active target, positron tracker, LXe calorimeter.
 - ✓ Collection of $2 \times 10^8 \pi^+ \rightarrow e^+ \nu$ events in three years.
 - ✓ Key point: control of the $\pi^+ \rightarrow e^+ v$ signal tail in the calorimeter to a 10^{-4} precision. $\frac{8}{2}10^2$
- ❖ PIONEER Phase II,III: V_{ud} from $\pi^+ \rightarrow \pi^0 e^+ v^*$ decays to a 0.02% level.

A hidden-sector example: HNL

- ❖ Strongest $|U_{e4}|^2$ limits below 400 MeV: K⁺, π ⁺→e⁺N from NA62 & PIENU.
- \diamondsuit Also important limits on $|U_{u4}|^2$ from E949, NA62 and PIENU.
- ❖ NA62/E949 limits are complementary to HNL <u>decay</u> searches at T2K.
- * Next-generation K⁺ and π^+ experiments (NA62++, PIONEER) to improve by up to factor 10, reaching the seesaw bound.
- ❖ A related NA62 result: $BR(K^+ \rightarrow \mu^+ \nu \nu \nu) < 1.0 \times 10^{-6}$ at 90% CL, and similar limits on $BR(K^+ \rightarrow \mu^+ \nu X)$, with X=invisible. [PLB 816 (2021) 136259]

Summary

- Flavor physics experiments probe both very high mass scales, and feebly interacting hidden sectors.
- \Leftrightarrow RF2: precision measurements of kaon, hyperon, π^+ and $\eta^{(\prime)}$ decays.
 - ✓ CKM parameter measurements and unitary tests; symmetry tests; lepton flavor/number conservation tests; lepton universality tests.
 - ✓ Heavy new physics: sensitivity up to the PeV mass scale.
 - ✓ Hidden sectors: leading sensitivity below the GeV mass scale.
- Much experimental activity:
 - ✓ Ultra-rare kaon decays at NA62 and KOTO (+ future projects);
 - ✓ CPV in hyperon decays at BESIII (+ future super charm-tau factories);
 - ✓ kaon and hyperon decays at LHCb;
 - ✓ LFU and V_{ud} in pion decays at PIONEER;
 - \checkmark Symmetry tests at η factories: JEF; REDTOP proposal.
- Significant advances in theory and lattice QCD: crucial for progress.

Medium-scale initiatives (many centered in Europe and Asia): powerful physics insights, relatively short time scales, superb training opportunities, modest investment.