

Snowmass Rare and Precision Measurement Frontier, Spring Meeting Cincinnati, USA, 16 May - 19 May 2022 Hybrid format, in-person presentation

The hybrid-symmetric storage ring lattice for a high-sensitivity proton EDM experiment at 10⁻²⁹ *e*-cm

Center for Axion and Precision Physics Research

CAPF

Yannis K. Semertzidis, IBS/CAPP & KAIST, South Korea for the Storage Ring EDM Collaboration

- Statistics for 10⁻²⁹ *e*-cm for pEDM, for best hadronic EDM exp.
- Matching systematic error levels, using symmetries

Snowmass paper on EDMs, why many EDMs:

Operator	Loop order	Mass reach
Electron EDM	1	$48{ m TeV}\sqrt{10^{-29}e{ m cm}/d_e^{ m max}}$
	2	$2{ m TeV}\sqrt{10^{-29}e{ m cm}/d_e^{ m max}}$
Up/down quark EDM	1	$130{ m TeV}\sqrt{10^{-29}e{ m cm}/d_q^{ m max}}$
	2	$13{ m TeV}\sqrt{10^{-29}e{ m cm}/d_q^{ m max}}$
Up-quark CEDM	1	$210\mathrm{TeV}\sqrt{10^{-29}\mathrm{cm}/ ilde{d}_u^{\mathrm{max}}}$
	2	$20{ m TeV}\sqrt{10^{-29}{ m cm}/ ilde{d}_u^{ m max}}$
Down-quark CEDM	1	$290\mathrm{TeV}\sqrt{10^{-29}\mathrm{cm}/ ilde{d}_d^{\mathrm{max}}}$
	2	$28{ m TeV}\sqrt{10^{-29}{ m cm}/ ilde{d}_d^{ m max}}$
Gluon CEDM	$2~(\propto m_t)$	$22{ m TeV}\sqrt[3]{10^{-29}{ m cm}/(100{ m MeV})}/ ilde{d}_G^{ m max}$
	2	$260{ m TeV}\sqrt{10^{-29}{ m cm}/(100{ m MeV})/{ ilde{d}_G^{ m max}}}$

TABLE I. Crude estimate of the mass reach of different operators. See text for explanation of the notation and assumptions used in deriving the estimates.

$$\begin{aligned} d_n &= -(1.5 \pm 0.7) \cdot 10^{-3} \ \bar{\theta} \ e \ \text{fm} \\ &-(0.20 \pm 0.01) d_u + (0.78 \pm 0.03) d_d + (0.0027 \pm 0.016) d_s \\ &-(0.55 \pm 0.28) e \tilde{d}_u - (1.1 \pm 0.55) e \tilde{d}_d + (50 \pm 40) \ \text{MeVe} \ \tilde{d}_G \end{aligned}$$

Electric dipole moments and the search for new physics

Ricardo Alarcon,¹ Jim Alexander,² Vassilis Anastassopoulos,³ Takatoshi Aoki,⁴ Rick Baartman,⁵ Stefan Baeßler,^{6,7} Larry Bartoszek,⁸ Douglas H. Beck,⁹ Franco Bedeschi,¹⁰ Robert Berger,¹¹ Martin Berz,¹² Tanmoy Bhattacharya⁰,^{13, a} Michael Blaskiewicz,¹⁴ Thomas Blum,^{15, b} Themis Bowcock,¹⁶ Kevin Brown,¹⁴ Dmitry Budker,^{17,18} Sergey Burdin,¹⁶ Brendan C. Casey,¹⁹ Gianluigi Casse,²⁰ Giovanni Cantatore,²¹ Lan Cheng,²² Timothy Chupp,²⁰ Vince Cianciolo,²³ Vincenzo Cirigliano³,^{13,24, c} Steven M. Clayton,²⁵ Chris Crawford,²⁶ B. P. Das,²⁷ Hooman Davoudiasl,¹⁴ Jordy de Vries,^{28,29,d} David DeMille,^{30,31,e} Dmitri Denisov,¹⁴ Milind V. Diwan,¹⁴ John M. Dovle,³² Jonathan Engel,³³ George Fanourakis,³⁴ Renee Fatemi,³⁵ Bradlev W. Filippone,³⁶ Nadia Fomin,³⁷ Wolfram Fischer,¹⁴ Antonios Gardikiotis,^{38,3} R. F. Garcia Ruiz,³⁹ Claudio Gatti,⁴⁰ James Gooding,¹⁶ Peter Graham,⁴¹ Frederick Gray,⁴² W. Clark Griffith,⁴³ Selcuk Haciomeroglu,⁴⁴ Gerald Gwinner,⁴⁵ Steven Hoekstra,^{46,47} Georg H. Hoffstaetter,² Haixin Huang,¹⁴ Nicholas R. Hutzler^{(3,48, f} Marco Incagli,¹⁰ Takeyasu M. Ito^{(3,25, g} Taku Izubuchi,⁴⁹ Andrew M. Jayich,⁵⁰ Hoyong Jeong,⁵¹ David Kaplan,⁵² Marin Karuza,⁵³ David Kawall,⁵⁴ On Kim,⁴⁴ Ivan Koop,⁵⁵ Valeri Lebedev,¹⁹ Jonathan Lee,⁵⁶ Soohyung Lee,⁴⁴ Kent K. H. Leung,⁵⁷ Chen-Yu Liu,^{58,9,h} Joshua Long,^{58,9} Alberto Lusiani,^{59,10} William J. Marciano,¹⁴ Marios Maroudas,³ Andrei Matlashov,⁴⁴ Nobuvuki Matsumoto,⁶⁰ Richard Mawhorter,⁶¹ Francois Meot,¹⁴ Emanuele Mereghetti,¹³ James P. Miller,⁶² William M. Morse,^{63, i} James Mott,^{62, 19} Zhanibek Omarov,^{44,64} Chris O'Shaughnessy,²⁵ Cenap Ozben,⁶⁵ Seong Tae Park,⁴⁴ Robert W. Pattie Jr.,⁶⁶ Alexander N. Petrov,^{67,68} Giovanni Maria Piacentino,⁶⁹ Bradley R. Plaster,²⁶ Boris Podobedov,¹⁴ Matthew Poelker,⁷⁰ Dinko Pocanic,⁷¹ V. S. Prasannaa,²⁷ Joe Price,¹⁶ Michael J. Ramsev-Musolf,^{72,73} Deepak Raparia,¹⁴ Surjeet Rajendran,⁵² Matthew Reece^(0,74, j) Austin Reid,⁵⁸ Sergio Rescia,¹⁴ Adam Ritz,⁷⁵ B. Lee Roberts,⁶² Marianna S. Safronova,⁷⁶ Yasuhiro Sakemi,⁷⁷ Andrea Shindler,⁷⁸ Yannis K. Semertzidis⁰,^{44, 64, k} Alexander Silenko,⁷⁹ Jaideep T. Singh,⁸⁰ Leonid V. Skripnikov,^{67,68} Amarjit Soni,¹⁴ Edward Stephenson,⁵⁸ Riad Suleiman,⁸¹ Avaki Sunaga,⁸² Michael Syphers,⁸³ Sergev Syritsyn,⁸⁴ M. R. Tarbutt,⁸⁵ Pia Thoerngren,⁸⁶ Rob G. E. Timmermans,⁸⁷ Volodya Tishchenko,¹⁴ Anatoly V. Titov,^{67,68} Nikolaos Tsoupas,¹⁴ Spyros Tzamarias,⁸⁸ Alessandro Variola,⁴⁰ Graziano Venanzoni,¹⁰ Eva Vilella,¹⁶ Joost Vossebeld,¹⁶ Peter Winter[®],^{89,1} Eunil Won,⁵¹ Anatoli Zelenski,¹⁴ Yan Zhou,⁹⁰ and Konstantin Zioutas³ ¹Arizona State University, Tempe, AZ 85287, USA

15 Mar 2022

[hep-ph]

arXiv:2203.08103v1

²Cornell University, Ithaca, New York, USA ³University of Patras, Dept. of Physics, Patras-Rio, Greece ⁴The University of Tokyo, Meguro-ku, Tokyo, Japan ⁵TRIUMF, Vancouver, British Columbia, Canada ⁶University of Virginia, 382 McCormick Road, Charlottesville, VA 22903, USA ⁷Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA ⁸Bartoszek Engineering, Aurora, IL 60506, USA. ⁹University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA ¹⁰National Institute for Nuclear Physics (INFN-Pisa), Pisa, Italy ¹¹Philipps-Universitaet Marburg, Fachbereich Chemie, Hans-Meerwein-Str. 4, 35032 Marburg, Germany ¹²Michigan State University, East Lansing, Michigan, USA ¹³T-2, Los Alamos National Laboratory, Los Alamos, NM 87545, USA ¹⁴Brookhaven National Laboratory, Upton, New York, USA ¹⁵Department of Physics, University of Connecticut, USA ¹⁶University of Liverpool, Liverpool, UK ¹⁷Helmholtz-Institute Mainz, Johannes Gutenberg University, Mainz, Germany ¹⁸University of California at Berkeley, Berkeley, California, USA

Snowmass paper on EDMs

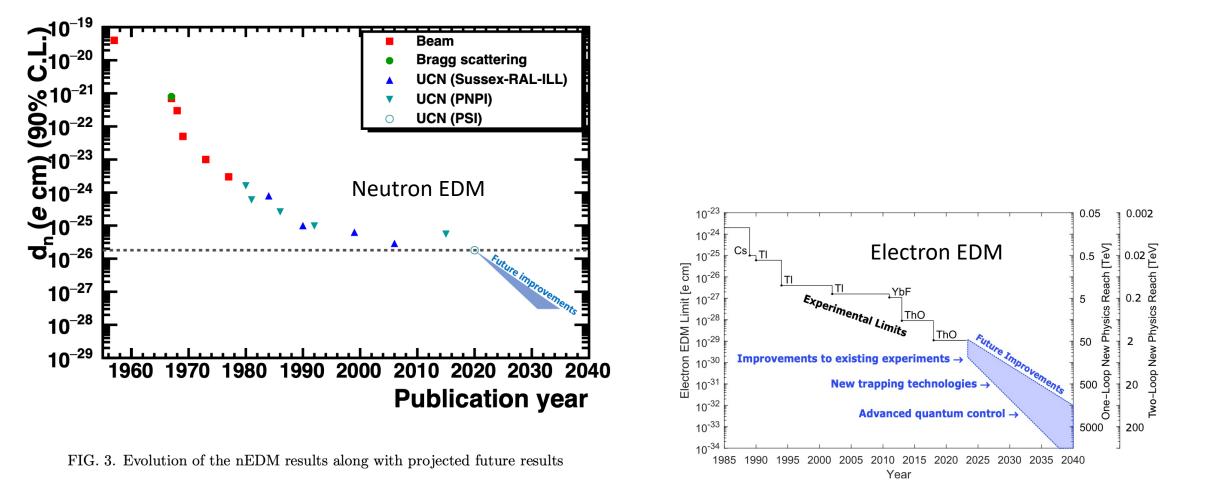
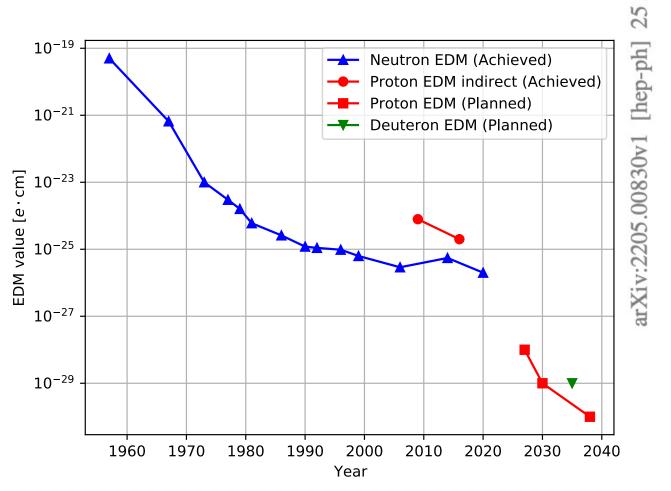
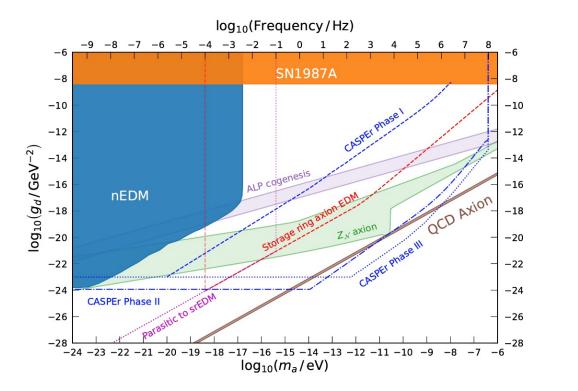



FIG. 5. Electron EDM limits versus time, along with new physics reach for one-loop and two-loop effects (see Eq. 2). All electron EDM experiments to date use AMO techniques. The solid line indicates the most sensitive experimental limit, including the species used. The shaded area indicates potential future improvements discussed in the text. Improvements in the next few years are driven largely by improvements to existing experiments and are quite likely, though as we go more into the future the projection becomes increasingly speculative and uncertain.

Snowmass paper on pEDM

The storage ring proton EDM experiment


Jim Alexander⁷, Vassilis Anastassopoulos³⁶, Rick Baartman²⁸, Stefan Baeßler^{39,22}, Franco Bedeschi¹⁹, Martin Berz¹⁷, Michael Blaskiewicz⁴, Themis Bowcock³³, Kevin Brown⁴, Dmitry Budker^{9,31}, Sergey Burdin³³, Brendan C. Casey⁸, Gianluigi Casse³⁴, Giovanni Cantatore³⁸, Timothy Chupp³⁴, Hooman Davoudiasl⁴, Dmitri Denisov⁴, Milind V. Diwan⁴, George Fanourakis²⁰, Antonios Gardikiotis^{30,36}, Claudio Gatti¹⁸, James Gooding³³, Renee Fatemi³², Wolfram Fischer⁴, Peter Graham²⁶, Frederick Gray²³, Selcuk Haciomeroglu⁶, Georg H. Hoffstaetter⁷, Haixin Huang⁴, Marco Incagli¹⁹, Hoyong Jeong¹⁶, David Kaplan¹³, Marin Karuza³⁷, David Kawall²⁹, On Kim⁶, Ivan Koop⁵, Valeri Lebedev^{14,8}, Jonathan Lee²⁷, Soohyung Lee⁶, Alberto Lusiani^{25,19}, William J. Marciano⁴, Marios Maroudas³⁶, Andrei Matlashov⁶, Francois Meot⁴, James P. Miller³, William M. Morse⁴, James Mott^{3,8}, Zhanibek Omarov^{15,6}, Cenap Ozben¹¹, SeongTae Park⁶, Giovanni Maria Piacentino³⁵, Boris Podobedov⁴, Matthew Poelker¹², Dinko Pocanic³⁹, Joe Price³³, Deepak Raparia⁴, Surjeet Rajendran¹³, Sergio Rescia⁴, B. Lee Roberts³, Yannis K. Semertzidis ^{*6,15}, Alexander Silenko¹⁴, Amarjit Soni⁴, Edward Stephenson¹⁰, Riad Suleiman¹², Michael Syphers²¹, Pia Thoerngren²⁴, Volodya Tishchenko⁴, Nicholaos Tsoupas⁴, Spyros Tzamarias¹, Alessandro Variola¹⁸, Graziano Venanzoni¹⁹, Eva Vilella³³, Joost Vossebeld³³, Peter Winter², Eunil Won¹⁶, Anatoli Zelenski⁴, and Konstantin Zioutas³⁶

Apr 2022

 ²Argonne National Laboratory, Lemont, Illinois, USA
 ³Boston University, Boston, Massachusetts, USA
 ⁴Brookhaven National Laboratory, Upton, New York, USA
 ⁵Budker Institute of Nuclear Physics, Novosibirsk, Russia
 ⁶Center for Axion and Precision Physics Research, Institute for Basic Science, Daejeon, Korea
 ⁷Cornell University, Ithaca, New York, USA
 ⁸Fermi National Accelerator Laboratory, Batavia, Illinois, USA
 ⁹Helmholtz-Institute Mainz, Johannes Gutenberg University, Mainz, Germany
 ¹⁰Indiana University, Bloomington, Indiana, USA

¹Aristotle University of Thessaloniki, Thessaloniki, Greece

Snowmass paper on pEDM

: Parameter space for the ALP-EDM coupling strength g_d . Filled regions are excluded from (blue) the laboratory neutron EDM experiment [61] and (orange) astronomic constraints from the supernova cooling [57]. The other shaded regions are theoretically motivated regions from (brown) the QCD axion, (purple) the ALP cogenesis when the coupling constant c_{aNN} is between 1 and 10 [62] and (green) Z_N axion when it makes up the entire local dark matter density [63, 64]. Dashed lines indicate projected sensitivities proposed by (blue) the CASPEr experiment [58– 60] and (red) the storage-ring axion-induced EDM experiment including (magenta) parasitic measurement in the frozen-spin storage ring EDM experiment [4, 34].

The storage ring proton EDM experiment

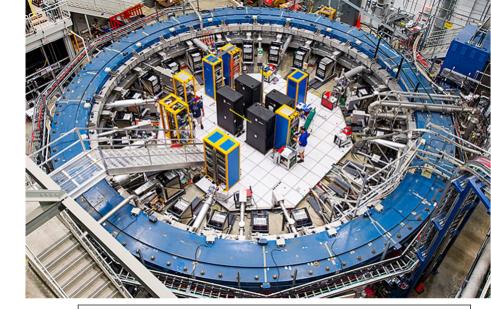
Jim Alexander⁷, Vassilis Anastassopoulos³⁶, Rick Baartman²⁸, Stefan Baeßler^{39,22}, Franco Bedeschi¹⁹, Martin Berz¹⁷, Michael Blaskiewicz⁴, Themis Bowcock³³, Kevin Brown⁴, Dmitry Budker^{9,31}, Sergey Burdin³³, Brendan C. Casey⁸, Gianluigi Casse³⁴, Giovanni Cantatore³⁸, Timothy Chupp³⁴, Hooman Davoudiasl⁴, Dmitri Denisov⁴, Milind V. Diwan⁴, George Fanourakis²⁰, Antonios Gardikiotis^{30,36}, Claudio Gatti¹⁸, James Gooding³³, Renee Fatemi³², Wolfram Fischer⁴, Peter Graham²⁶, Frederick Gray²³, Selcuk Haciomeroglu⁶, Georg H. Hoffstaetter⁷, Haixin Huang⁴, Marco Incagli¹⁹, Hoyong Jeong¹⁶, David Kaplan¹³, Marin Karuza³⁷, David Kawall²⁹, On Kim⁶, Ivan Koop⁵, Valeri Lebedev^{14,8}, Jonathan Lee²⁷, Soohyung Lee⁶, Alberto Lusiani^{25,19}, William J. Marciano⁴, Marios Maroudas³⁶, Andrei Matlashov⁶, Francois Meot⁴, James P. Miller³, William M. Morse⁴, James Mott^{3,8}, Zhanibek Omarov^{15,6}, Cenap Ozben¹¹, SeongTae Park⁶, Giovanni Maria Piacentino³⁵, Boris Podobedov⁴, Matthew Poelker¹², Dinko Pocanic³⁹, Joe Price³³, Deepak Raparia⁴, Surjeet Rajendran¹³, Sergio Rescia⁴, B. Lee Roberts³, Yannis K. Semertzidis ^{*6,15}, Alexander Silenko¹⁴. Amarjit Soni⁴, Edward Stephenson¹⁰, Riad Suleiman¹², Michael Syphers²¹, Pia Thoerngren²⁴, Volodya Tishchenko⁴, Nicholaos Tsoupas⁴, Spyros Tzamarias¹, Alessandro Variola¹⁸, Graziano Venanzoni¹⁹, Eva Vilella³³, Joost Vossebeld³³, Peter Winter², Eunil Won¹⁶, Anatoli Zelenski⁴, and Konstantin Zioutas³⁶

Apr 2022

25

[hep-ph]

arXiv:2205.00830v1


 ¹Aristotle University of Thessaloniki, Thessaloniki, Greece
 ²Argonne National Laboratory, Lemont, Illinois, USA
 ³Boston University, Boston, Massachusetts, USA
 ⁴Brookhaven National Laboratory, Upton, New York, USA
 ⁵Budker Institute of Nuclear Physics, Novosibirsk, Russia
 ⁶Center for Axion and Precision Physics Research, Institute for Basic Science, Daejeon, Korea
 ⁷Cornell University, Ithaca, New York, USA
 ⁸Fermi National Accelerator Laboratory, Batavia, Illinois, USA
 ⁹Helmholtz-Institute Mainz, Johannes Gutenberg University, Mainz, Germany
 ¹⁰Indiana University, Bloomington, Indiana, USA

Storage ring pEDM at $10^{-29}e$ -cm, best hadronic EDM exp.

- High physics reach at hundreds of TeV New-Physics mass scale, enhanced sensitivity to θ_{OCD} by three orders of magnitude. Best sensitivity to Higgs CPV
- If found, it can help explain the matter-antimatter asymmetry of the universe.
- Together with ARIADNE (monopole-dipole interactions) probe high frequency axion dark matter and axion physics in unique ways.
- Direct search for low/very low frequency axion dark matter
- High intensity polarized proton and deuteron beams available. The natural beam lifetime is very long, opportunity for large statistical accuracy.

Muon g-2 experiment

- Muon g-2 results announcement at Fermilab, April 2021 reached >3B people.
- Muon g-2 success. The collaboration developed several high-precision numerical integrators for beam/spin dynamics simulations probing systematic errors.

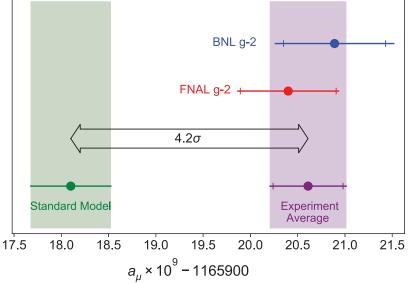


FIG. 4. From top to bottom: experimental values of a_{μ} from BNL E821, this measurement, and the combined average. The inner tick marks indicate the statistical contribution to the total uncertainties. The Muon g - 2 Theory Initiative recommended value [13] for the standard model is also shown.

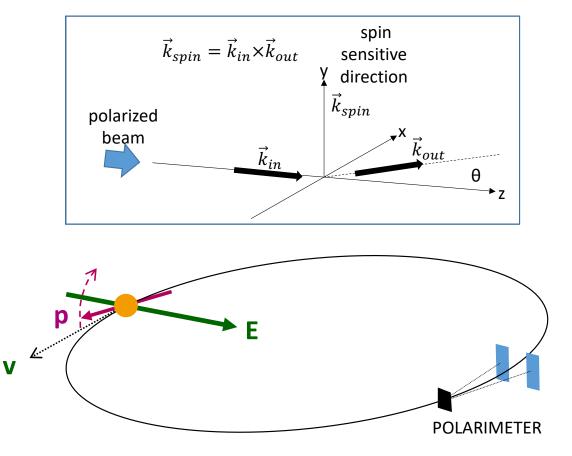
Hadronic Electric Dipole Moments

Input to hadronic EDM

- Theta-QCD (part of the SM)
- CP-violation sources beyond the SM

A number of alternative simple systems could provide invaluable complementary information (e.g. proton, neutron and ³He, deuteron,...).

 At 10⁻²⁹e·cm pEDM is at least an order of magnitude more sensitive than the current nEDM plans. EDMs of different systems (Marciano)


Theta_QCD:
$$d_n \simeq -d_p \simeq 3 \times 10^{-16} \overline{\theta} \, \mathrm{e} \cdot \mathrm{cm}$$

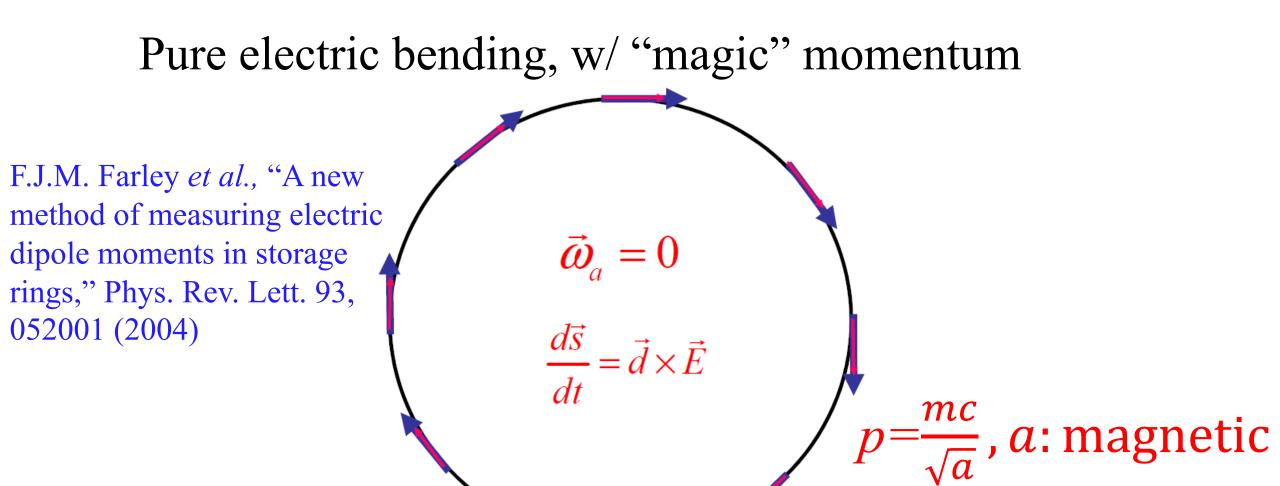
 $d_D \left(\overline{\theta}\right) / d_N \left(\overline{\theta}\right) \approx 1/3$

Super-Symmetry (SUSY) model predictions:

$$\begin{aligned} d_n &\simeq 1.4 \left(d_d - 0.25 d_u \right) + 0.83 e \left(d_u^c + d_d^c \right) - 0.27 e \left(d_u^c - d_d^c \right) \\ d_p &\simeq 1.4 \left(d_d - 0.25 d_u \right) + 0.83 e \left(d_u^c + d_d^c \right) + 0.27 e \left(d_u^c - d_d^c \right) \\ d_D &\simeq \left(d_u + d_d \right) - 0.2 e \left(d_u^c + d_d^c \right) - 6 e \left(d_u^c - d_d^c \right) \end{aligned}$$

$$d_N^{I-1} \simeq 0.87 (d_u - d_d) + 0.27e (d_u^c - d_d^c) \qquad d_N^{I-1} = (d_p - d_n)/2$$

$$d_N^{I-0} \simeq 0.5 (d_u + d_d) + 0.83e (d_u^c + d_d^c) \qquad d_N^{I-0} = (d_p + d_n)/2$$


Storage ring Electric Dipole Moments

Frozen spin method:

- Spin aligned with the momentum vector
- Radial E-field precesses EDM/spin vertically
- Monitoring the spin using a polarimeter

Storage Ring EDM experiments, frozen spin method

moment anomaly

Electric fields: Freezing the g-2 spin precession

$$\vec{\omega}_a = -\frac{q}{m} \left[a - \left(\frac{mc}{p}\right)^2 \right] \frac{\vec{\beta} \times \vec{E}}{c} = 0$$

 The g-2 spin precession is zero at "magic" momentum (3.1GeV/c for muons,...), so the focusing system can be electric

$$p=rac{mc}{\sqrt{a}}$$
, with $a=G=rac{g-2}{2}$, $\gamma_m=\sqrt{1+1/a}$

• The "magic" momentum concept with electric focusing was first used in the last muon g-2 experiment at CERN, at BNL & FNAL.

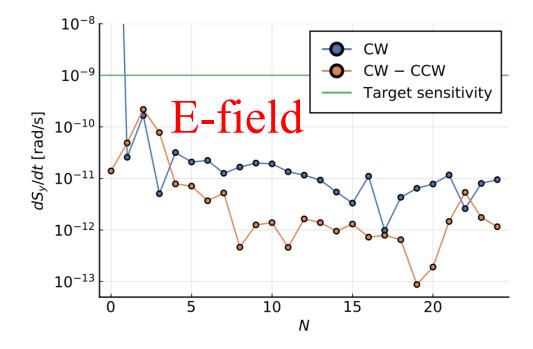
Proton Statistical Error (232MeV): 10-29 e-cm

Phys. Rev. D 104, 096006 (2021)

$$\sigma_d = \frac{2.33\hbar}{E_R P A \sqrt{N_c f \tau_p T_{tot}}}$$

 τ_p : 2×10³sPolarization Lifetime (Spin Coherence Time)A : 0.6Left/right asymmetry observed by the polarimeterP : 0.8Beam polarization N_c : 4×1010p/cycle Total number of stored particles per cycle (10³s) T_{Tot} : 2×107sTotal running time per yearf : 1%Useful event rate fraction (efficiency for EDM) E_R : 4.5 MV/mRadial electric field strength

Systematic errors

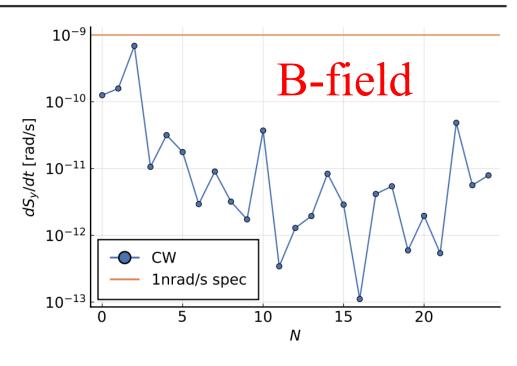
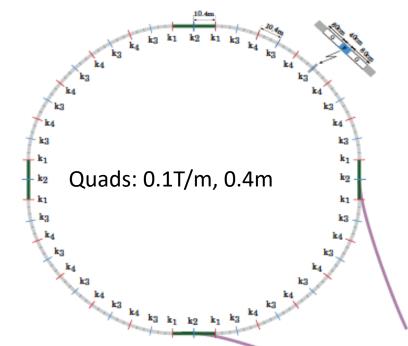

Storage Ring Electric Dipole Moments exp. options

Fields	Example	EDM signal term	Comments
Dipole magnetic field (B) (Parasitic)	Muon g-2	Tilt of the spin precession plane. (Limited statistical sensitivity due to spin precession)	Eventually limited by geometrical alignment. Requires consecutive CW and CCW injection to eliminate systematic errors
Combination of electric & and magnetic fields (E, B) (Combined lattice)	Deuteron, ³ He, proton, muon, etc.	Mainly: $\frac{d\vec{s}}{dt} = \vec{d} \times \left(\vec{v} \times \vec{B}\right)$	High statistical sensitivity. Requires consecutive CW and CCW injection with main fields flipping sign to eliminate systematic errors
Radial Electric field (E) & Electric focusing (E) (All electric lattice)	Proton, etc.	$\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E}$	Large ring, CW & CCW storage. Requires demonstration of adequate sensitivity to radial B-field syst. error
Radial Electric field (E) & Magnetic focusing (B) (Hybrid, symmetric lattice)	Proton, etc.	$\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E}$	Large ring, CW & CCW storage. Only lattice to achieve direct cancellation of main systematic error sources (its own "co-magnetometer"). GOLD STANDARD!

Effect as a function of azimuthal harmonic N

COMPREHENSIVE SYMMETRIC-HYBRID RING DESIGN FOR A ... PHY:

PHYS. REV. D 105, 032001 (2022)

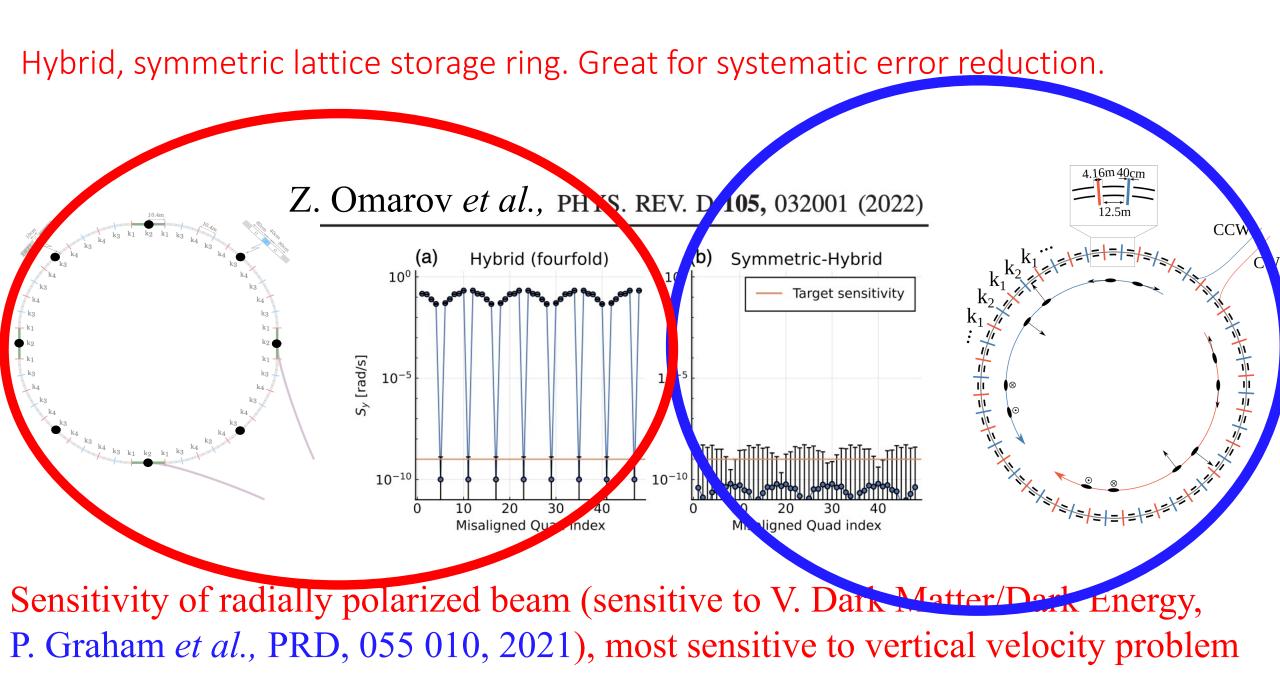

FIG. 7. Longitudinal polarization case $S_s = 1$, sensitive to EDM. Vertical spin precession rate vs $E_y = 10$ V/m field N harmonic around the ring azimuth. For N = 0, the precession rate for the CW (or CCW) beam is around 5 rad/s. The difference of the precession rates for CR beams (orange) is below the target sensitivity for all N. Irregularities of the low values are due to the inability to determine the exact precession rate from the simulation results. Hence, the points only show a statistical upper limit of the possible vertical precession rate; actual rates could be lower. More about this is in Appendix B.

FIG. 8. Longitudinal polarization case $S_s = 1$, CW beam only. Vertical spin precession rate vs $B_x = 1$ nT field N harmonic around the ring azimuth. The magnetic field amplitude is chosen to be similar to beam separation requirements in Sec. IVA, and more than $B_x = 1$ nT splits the CR beams too much. Irregularities of the low values are due to the inability to determine the exact precession rate from the simulation results. Hence, the points only show a statistical upper limit of the possible vertical precession rate; actual rates could be lower. More about this is in Appendix B.

Ring planarity: The average vertical speed in deflectors needs to be zero!

Vertical velocity effect cancels

ZHANIBEK OMAROV et al.

PHYS. REV. D 105, 032001 (2022)

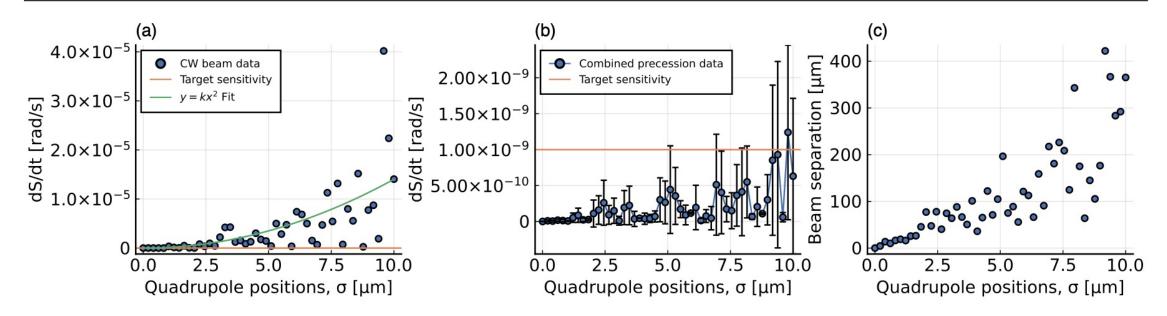
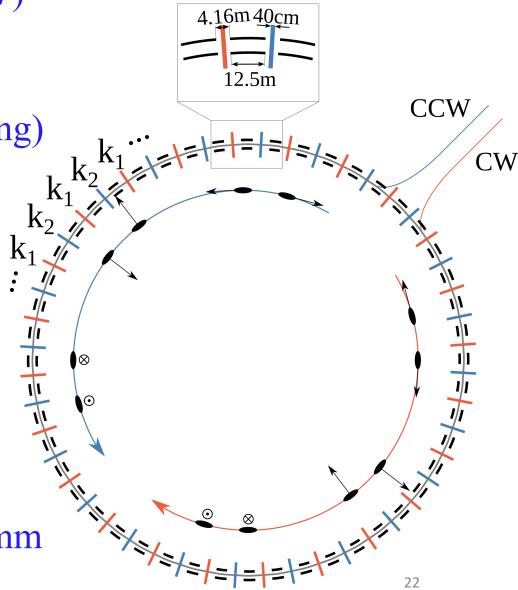


FIG. 9. (a) Longitudinal polarization case, CW beam only. Vertical spin precession rate (absolute) vs random misalignments of quadrupoles in both x, y directions by rms σ with different seeds per each point (when the same seeds are used everywhere, the $y = kx^2$ fit is perfect, meaning that every point can be extrapolated to any rms σ value using this functional form). Combination with CCW and quadrupole polarity switching achieves large cancellation—see part (b). (b) CW and CCW beam and with quadrupole polarity switching. Total combination as presented in Appendix C. Notably, the background vertical spin precession rate (absolute) stays below the target sensitivity. Irregularity of the points is discussed in Appendix B. (c) Correspondence between CR beam separation and rms σ quadrupole misalignments.

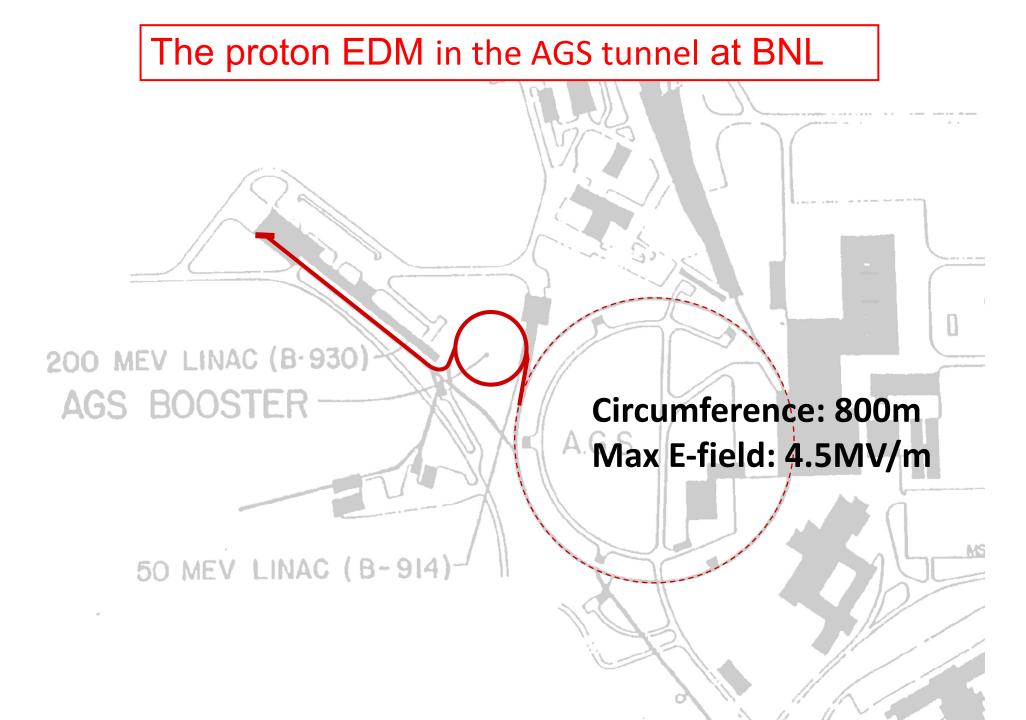
Classification of systematic errors at 10⁻²⁹ *e*-cm for hybrid-symmetric lattice


 ✓ Alternate magnetic focusing allows simultaneous CW & CCW storage and shields against external B-fields. Vertical dipole E-fields eliminated (its own "co-magnetometer"), unique feature of this lattice.

✓ Symmetric lattice significantly reduces systematic errors associated with vertical velocity (major source). Using longitudinal, radial and vertical polarization directions, sensitive to different physics/systematic errors.

✓ Required ring planarity <0.1mm; CW & CCW beam separation <0.01mm, resolves issues with geometrical phases</p>

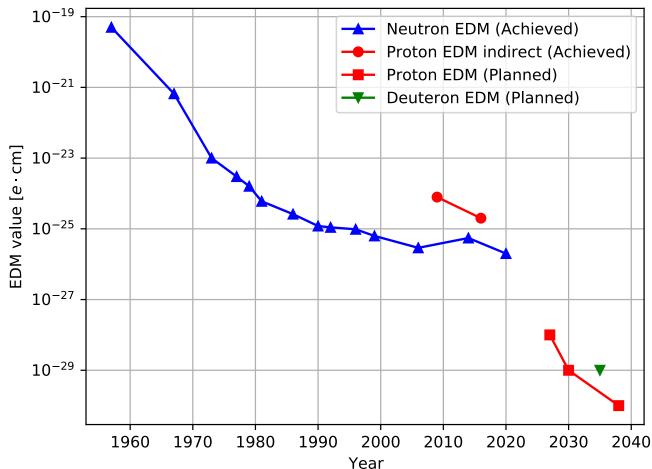
Symmetries against systematic errors


- Clock-wise (CW) vs. Counter-Clock-Wise (CCW)
 - Eliminates vertical Electric field background
- Hybrid lattice (electric bending, magnetic focusing)
 - Shields against background magnetic fields
- Highly symmetric lattice (24 FODO systems)
 - Eliminates vertical velocity background
- Positive and negative helicity
 - Reduce polarimeter systematic errors
- Flat ring to 0.1 mm, beams overlap within 0.01 mm
 - Geometrical phases; High-order vertical E-field

Protons in a hybrid-symmetric ring: no new technology

- No need to develop/test new technology
 - Simultaneous CW/CCW beam storage is possible
 - Electric field ~4.5 MV/m with present technology
 - Magnetic fields from misplaced quads are self-shielded by the magnetic focusing
 - Hybrid/symmetric ring options are simple. Large tune in both planes, beam position monitor (BPM) tasks are achievable with present technology.
 - Estimated SCT are large, injection into ring works, while all primary systematic error sources are kept small.
- After protons, add dipole magnetic field in bending sections:
 - Can do proton, deuteron, ³He, (and muons)

System	Risk factor, comments
Ring construction, beam storage, stability, IBS	Low. Strong (alternate) focusing, a ring prototype has been built (AGS analog at BNL) in 60's. Lattice elements placement specs are ordinary. Intra-beam-scattering (IBS) OK below transition.
E-field strength	Low. Plate-units are similar to those ran at Tevatron with higher specs.
E-field plates shape	Medium. Make as flat as conveniently possible. Probe and shim out high order fields by intentionally splitting the CR-beams
Spin coherence time	Low. Ordinary sextupoles will provide $>10^3$ s.
Beam position monitors (BPM), SQUID-based BPMs.	Medium. Ordinary BPMs and hydrostatic level system (HLS) to level the ring to better than 0.1mm; SQUID-based or more conventional BPMs to check CR-beams split to 0.01mm.
High-precision, efficient software	Low. Cross-checking our results routinely
Polarimeter	Low. Mature technology available



John Benante, Bill Morse in AGS tunnel, plenty of room for the EDM ring.

Timeline

- Snowmass/white paper, CDR, proposal/TDR, prototype/string-test, ring construction (3-5 years), storage (2-3 years) to first publication
- Effort similar to muon g-2 experiments.
- Possible interesting results within a decade.

Summary

- ✓ EDM physics is must do, exciting and timely, CP-violation, ~10³ TeV New-Physics reach, axion physics, DM/DE.
- ✓ Hybrid, symmetric ring lattice works well. Minimized systematic error sources.
 Statistics and systematics to better than 10⁻²⁹e-cm.
- ✓ E-field strength needed is less than TEVATRON (FNAL) ES-separators, operated reliably for >decade... At 4.4 MV/m, minimum risk. Working EDM lattice with long SCT and large enough acceptance provides the statistics. Ring planarity <0.1mm, CW & CCW beam separation <0.01mm.</p>
- ✓ Snowmass: A strong endorsement \rightarrow ... interesting results within a decade. Total effort similar to muon g-2 exp. ²⁸

References

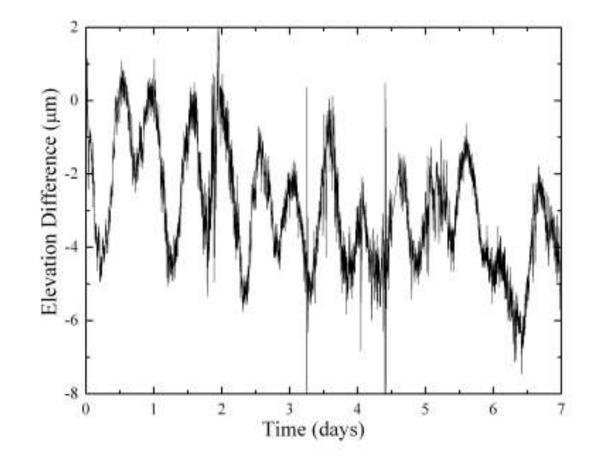
- 1. Z. Omarov *et al.*, Comprehensive Symmetric-Hybrid ring design for pEDM experiment at below 10⁻²⁹*e*-cm, Phys. Rev. D 105, 032001 (2022)
- 2. On Kim et al., New method of probing an oscillating EDM induced by axionlike dark matter..., Phys. Rev. D 104 (9), 096006 (2021)
- 3. P.W. Graham et al., Storage ring Probes for Dark Matter and Dark Energy, Phys. Rev. D 103 (5), 055010 (2021)
- 4. S. Haciomeroglu and Y.K. Semertzidis, Hybrid ring design in the storage-ring proton EDM experiment, Phys. Rev. Accel. Beams 22 (3), 034001 (2019)
- 5. S.P. Chang et al., Axionlike dark matter search using the storage ring EDM method, Phys. Rev. D 99 (8), 083002 (2019)
- 6. S. Haciomeroglu et al., SQUID-based Beam Position Monitor, PoS ICHEP2018 (2019) 279
- 7. N. Hempelmann et al., Phase locking the spin precession in a storage ring, Phys. Rev. Lett. 119 (1), 014801 (2017)
- 8. G. Guidoboni *et al.*, How to reach a Thousand-second in-plane Polarization Lifetime with 0.97 GeV/c Deuterons in a storage ring, Phys. Rev. Lett. 117 (5), 054801 (2016)
- 9. V. Anastassopoulos et al., A storage ring experiment to detect a proton electric dipole moment, Rev. Sci. Instrum. 87 (11), 115116 (2016)
- 10. E.M. Metodiev et al., Analytical benchmarks for precision particle tracking in electric and magnetic rings, NIM A797, 311 (2015)
- 11. E.M. Metodiev *et al.*, Fringe electric fields of flat and cylindrical deflectors in electrostatic charged particle storage rings, Phys. Rev. Accel. Beams 17 (7), 074002 (2014)
- 12. W.M. Morse *et al.*, rf Wien filter in an electric dipole moment storage ring: The "partially frozen spin" effect, Phys. Rev. Accel. Beams 16 (11), 114001 (2013)
- N.P.M. Brantjes *et al.*, Correction systematic errors in high-sensitivity deuteron polarization measurements, Nucl. Instrum. Meth. A664, 49 (2012)
- 14. G.W. Bennett et al., An improved limit on the muon electric dipole moment, Phys. Rev. D 80, 052008 (2009)
- 15. F.J.M. Farley et al., A new method of measuring electric dipole moments in storage rings, Phys. Rev. Lett. 93, 052001 (2004)

16. ...

Extra slides

Ring planarity critical to control geometrical phase errors

 Numerous studies on slow ground motion in accelerators, Hydrostatic Level System for slow ground motion studies at Fermilab. (Part of the linear collider studies!)


• Thorough review by Vladimir Shiltsev (FNAL): <u>https://arxiv.org/pdf/0905.4194.pdf</u>

HLS measurements at Fermilab

Fig.35. HLS probe on Tevatron accelerator focusing magnet.

Summary of the storage ring proton EDM experiment

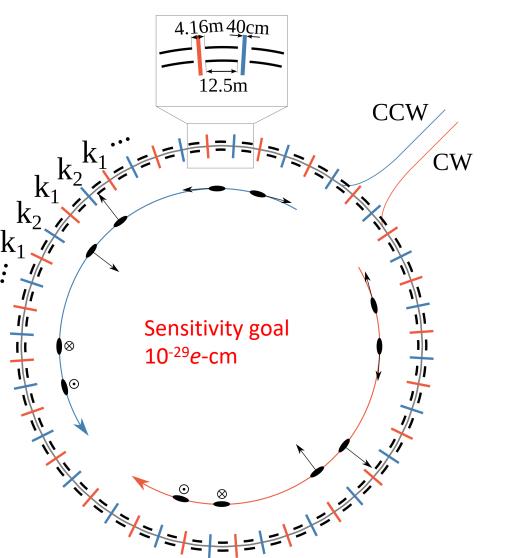
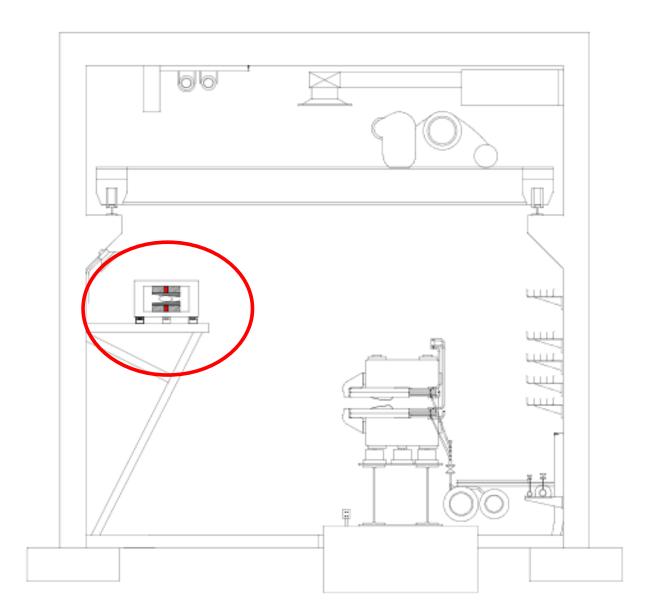
- Proton EDM sensitivity $10^{-29} e \cdot cm$.
- Improves the sensitivity to QCD CP-violation (θ_{QCD}) by three orders of magnitude, currently set by the neutron EDM experimental limits.
- New Physics reach is of order 1×10^3 TeV mass scale [1].
- Probes CP-violation in the Higgs sector with best sensitivity [2].
- 3-5 years of construction and 2-3 years (for statistics collection) to first physics publication.
- Sensitive to dark matter, vector dark matter/dark energy (DM/DE) models [3, 4]. DM/DE signal proportional to $\beta = v/c$. Magic momentum pEDM ring $\beta = 0.6$.
- pEDM is highly complementary to atomic and molecular (AMO) EDM experiments [5]. AMO: many different effects, "sole source analysis", unknown cancellations [6].
- After proton EDM, can add magnetic bending for deuteron/³He EDM measurements. Deuteron and ³He EDM measurements complementary physics to proton EDM.

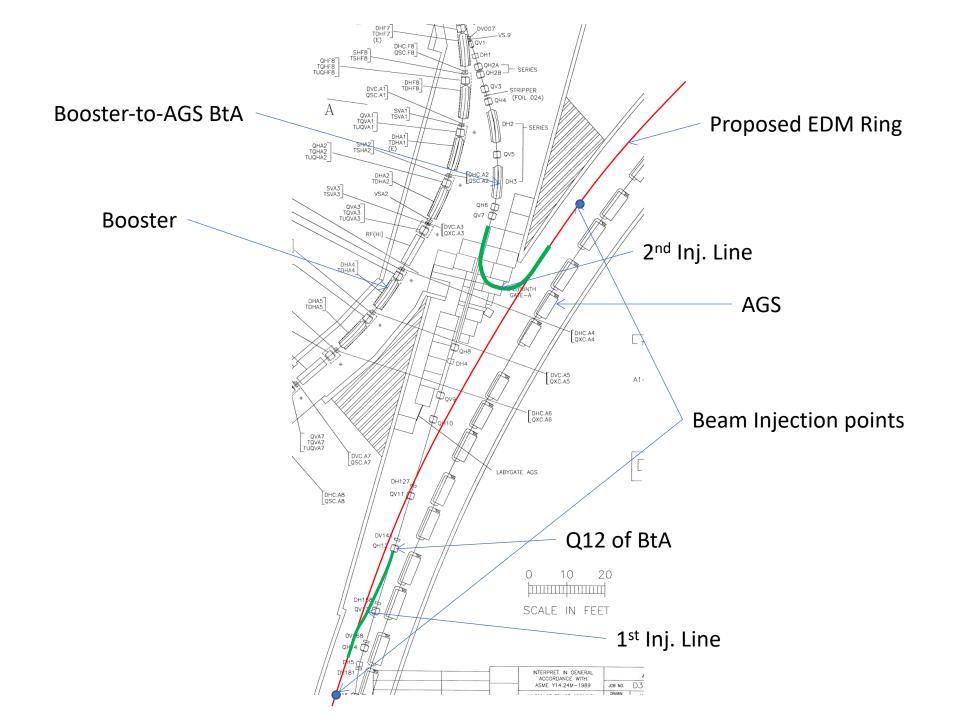
How it works

- Highly symmetric, magic momentum storage ring lattice in order to control systematics.
 - Proton magic momentum =0.7 GeV/c.
 - Proton polarimetry peak sensitivity at the magic momentum.
 - Optimal electric bending and magnetic focusing.
 - 2×10^{10} polarized protons per fill. One fill every twenty minutes.
 - Simultaneously stores clockwise (CW) and counterclockwise (CCW) bunches.
 - Simultaneously stores longitudinally polarized bunches with positive and negative helicities as well as radially polarized bunches.
 - 24-fold symmetric storage ring lattice.
 - Changes sign of the focusing/defocusing quadrupoles within 0.1% of ideal current setting per flip.
 - Keeps the vertical spin precession rate low when the beam planarity is within 0.1 mm over the whole circumference and the maximum split between the counter-rotating (CR) beams is $<0.01\,\rm{mm}.$
 - Closed orbit automatically compensates spin precession from radial magnetic fields.
 - Circumference = 800 m with E = 4.4 MV/m, a conservative electric field strength.

Hybrid, symmetric lattice storage ring, designed by Val. Lebedev (FNAL)

Z. Omarov et al., PHYS. REV. D 105, 032001 (2022)


TABLE I. Ring and beam parameters for Symmetric Hybrid ring design

Quantity	Value	
Bending Radius R_0	$95.49\mathrm{m}$	
Number of periods	24	
Electrode spacing	$4\mathrm{cm}$	
Electrode height	$20\mathrm{cm}$	
Deflector shape	cylindrical	Low risk
Radial bending E -field	$4.4\mathrm{MV/m}$	◀
Straight section length	$4.16\mathrm{m}$	
Quadrupole length	$0.4\mathrm{m}$	
Quadrupole strength	$\pm 0.21\mathrm{T/m}$	
Bending section length	$12.5\mathrm{m}$	
Bending section circumference	$600\mathrm{m}$	
Total circumference	$799.68\mathrm{m}$	
Cyclotron frequency	$224\mathrm{kHz}$	
Revolution time	$4.46\mu s$	
$\beta_x^{\max}, \ \beta_y^{\max}$	$64.54\mathrm{m},77.39\mathrm{m}$	Strong focusing
Dispersion, D_x^{\max}	$33.81\mathrm{m}$	Strong rocusing
Tunes, Q_x, Q_y	2.699, 2.245	
Slip factor, $\eta = \frac{dt}{t} / \frac{dp}{p}$	-0.253	
Momentum acceptance, (dp/p)	$5.2 imes 10^{-4}$	
Horizontal acceptance [mm mrad]	4.8	
RMS emittance [mm mrad], ϵ_x , ϵ_y	0.214, 0.250	
RMS momentum spread	1.177×10^{-4}	
Particles per bunch	1.17×10^8	
RF voltage	$1.89\mathrm{kV}$	
Harmonic number, h	80	
Synchrotron tune, Q_s	3.81×10^{-3}	
Bucket height, $\Delta p/p_{\text{bucket}}$	3.77×10^{-4}	
Bucket length	$10\mathrm{m}$	
RMS bunch length, σ_s	$0.994\mathrm{m}$	

Sketch of the AGS Accumulator Ring

• It was sketched for 1.5GeV ring. Space needed: 1mX1m.

Emittance out of Booster

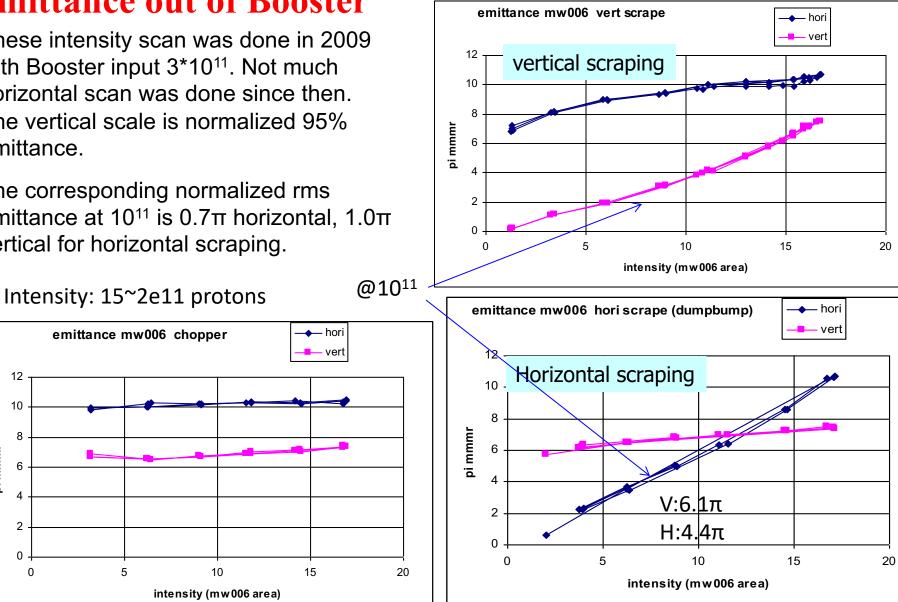
These intensity scan was done in 2009 with Booster input 3*10¹¹. Not much horizontal scan was done since then. The vertical scale is normalized 95% emittance.

The corresponding normalized rms emittance at 10^{11} is 0.7π horizontal, 1.0π vertical for horizontal scraping.

12

10

8


2

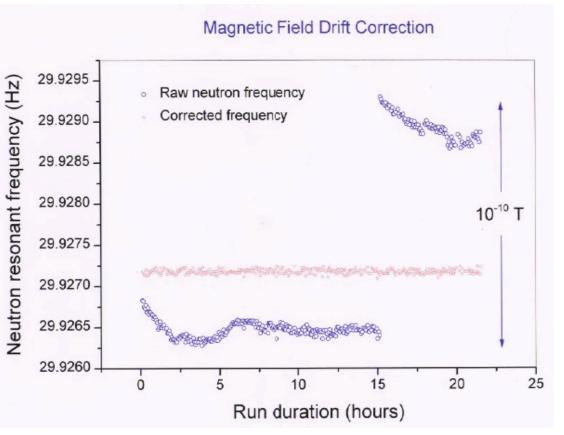
0

0

5

pi mmmr 6

³He Co-magnetometer in nEDM experiment

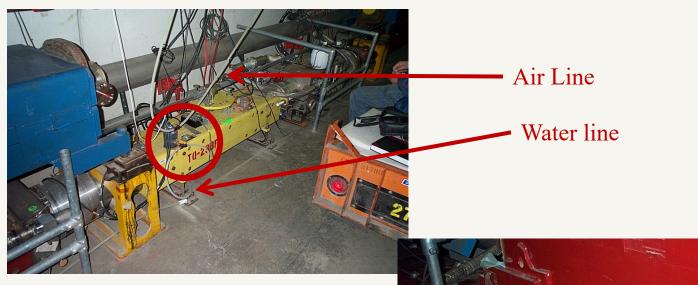

If nEDM = $10^{-26} e \cdot cm$,

 $10 \; kV/cm \rightarrow 0.1 \; \mu Hz$ shift

 \cong B field of 2 \times 10 ⁻¹⁵ T.

Co-magnetometer :

Uniformly samples the B Field faster than the relaxation time.

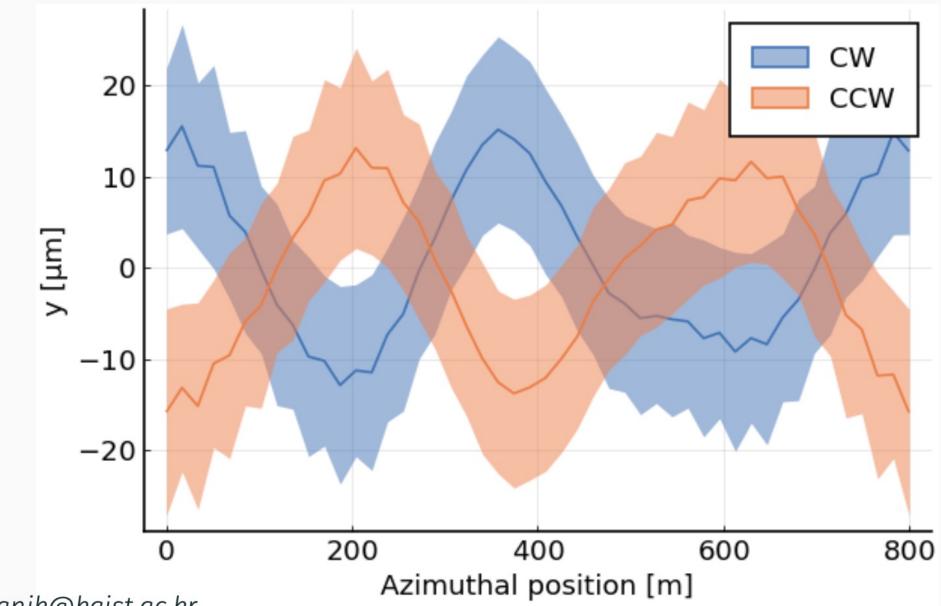


Data: ILL nEDM experiment with ¹⁹⁹Hg co-magnetometer

EDM of ¹⁹⁹Hg < 10⁻²⁸ e-cm (measured); atomic EDM ~ $Z^2 \rightarrow {}^{3}He EDM << 10^{-30} e-cm$

Under gravity, the center of mass of He-3 is higher than UCN by $\Delta h \approx 0.13$ cm, sets $\Delta B = 30$ pGauss (1 nA of leakage current). $\Delta B/B=10^{-3}$.

Tevatron Sensors on Quad



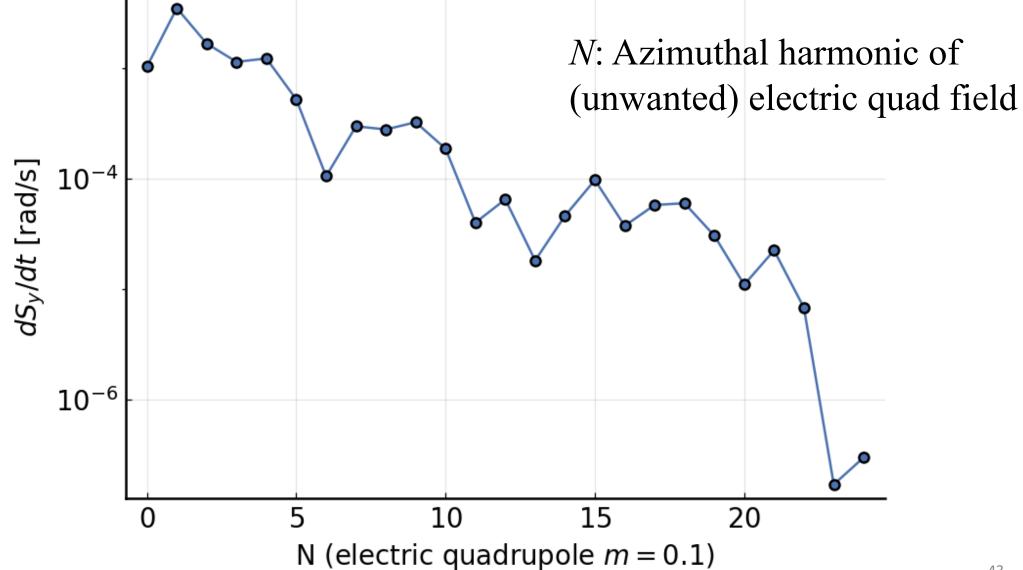
In the circle is a water level pot on a Tevatron quadrupole

James T Volk May 2009

• Misalign quadrupoles randomly:

Zhanibek Omarov zhanik@kaist.ac.kr

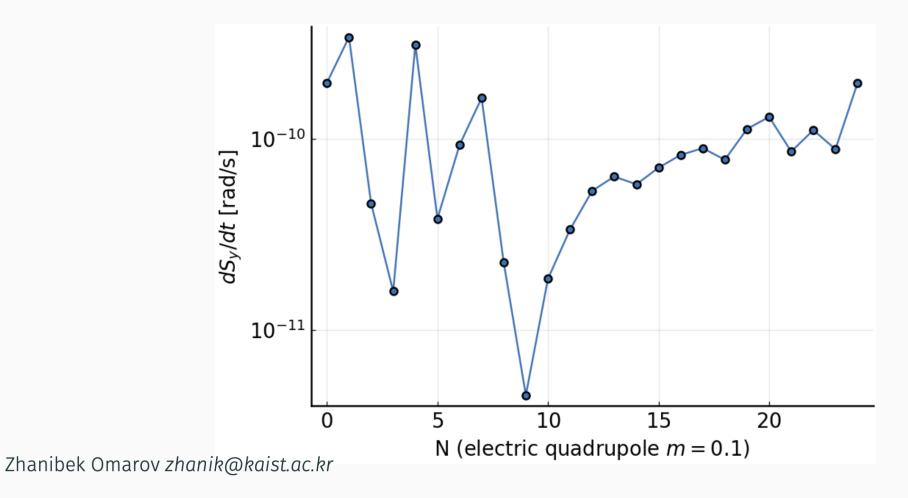
Electric quad-field


Quantifying E quad

• Using m = n - 1 focusing value of deflectors

$$E_y = \left(\frac{E_0(n-1)}{R_0}\right)y = \left(\frac{E_0m}{R_0}\right)y$$

 Let's quantify the amount of electric quadrupole component in terms of m equivalent


Electric quad-field, m=0.1, on all deflectors with N

Electric quad-field effect with magnetic quad current flip

Using quad polarity switch

+ Putting m = 0.1 on all deflectors with N

Random, unwanted electric quad-field, $\sigma_m=0.1$

Different random seeds

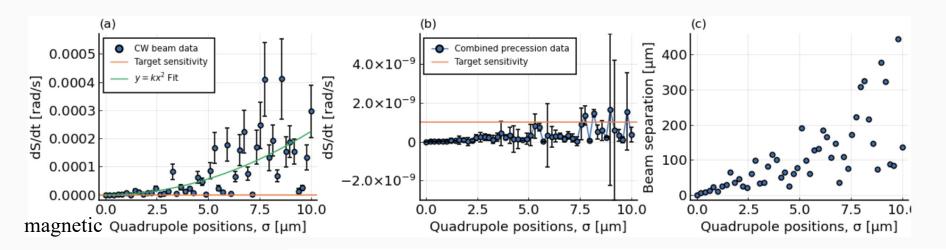
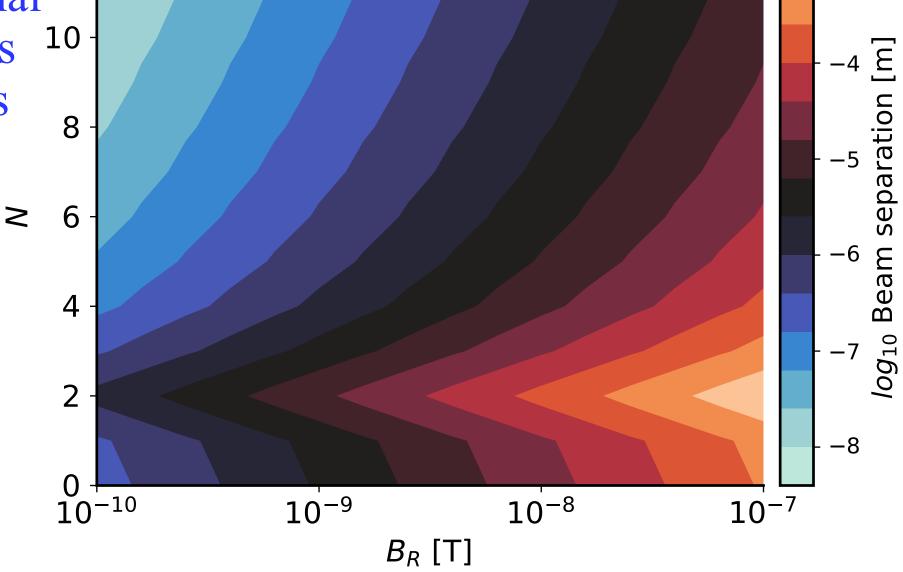
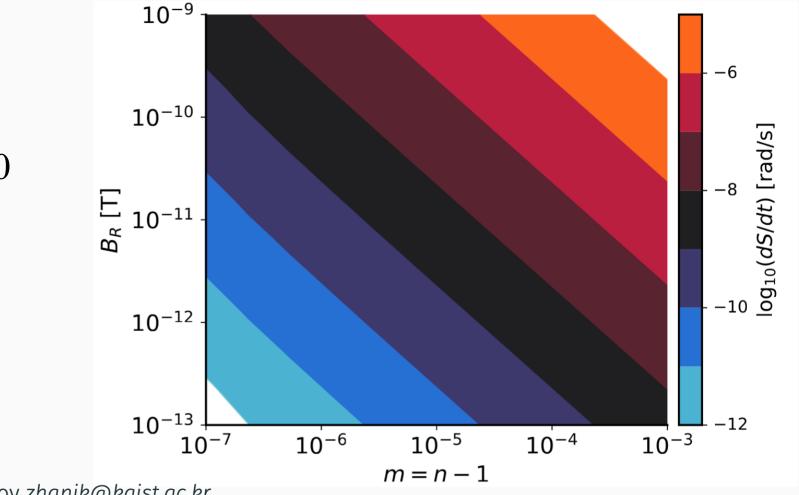



Table 4.2: Expected electric focusing m-equivalent for the various possible electric focusing sources. Notably, by far the largest contribution comes from the beam-to-beam electric fields.

	E quadrupole source	m equivalent	
	Beam-to-beam	$3.5 imes 10^{-3}$	
	Deflector tilt	2.5×10^{-9}	
0.1mm	Sextupole misalignment	$2.6 imes 10^{-5}$	

Zhanibek Omarov zhanik@kaist.ac.kr

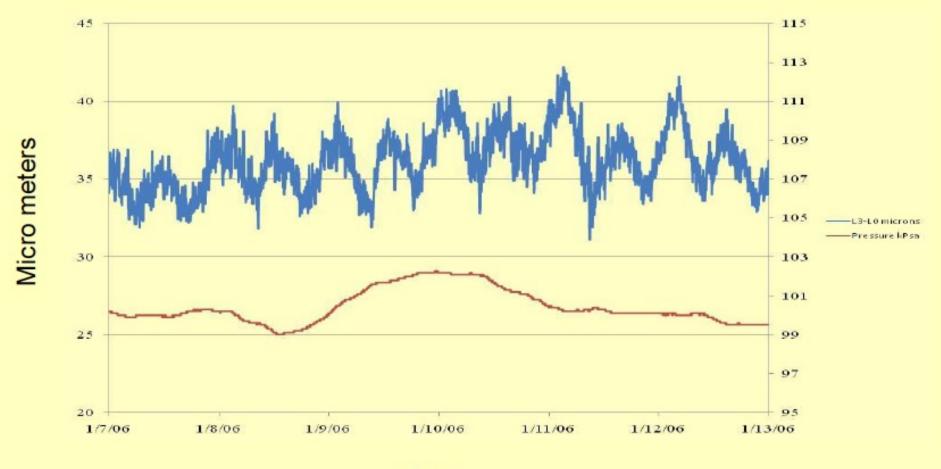


-3

E and external B_x couple

 $\cdot m$ value same for all deflectors

Need to reduce $m < 10^{-6}$ for N=0

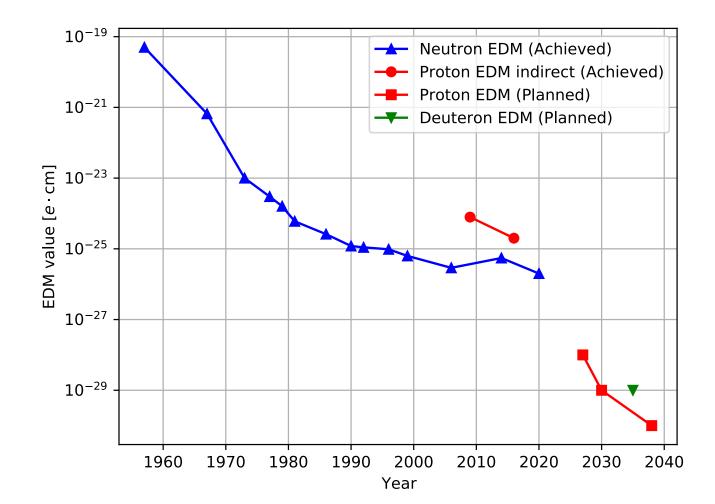


Zhanibek Omarov zhanik@kaist.ac.kr

Ongoing/next efforts

- Snowmass effort, support for storage ring EDM
- Writing Conceptual Design Report
- Build prototypes of E-bending plates, quadrupoles, sextupoles (combined magnetic and electric fields)
- Build prototype hydronic leveling system (HLS)
- Design and build RF-cavity, polarimeters, injection system

MINOS Tidal Data Difference in two sensors 90 meters apart

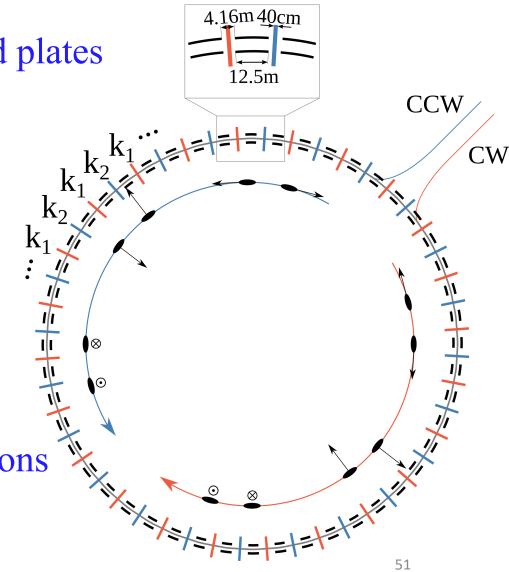


Date

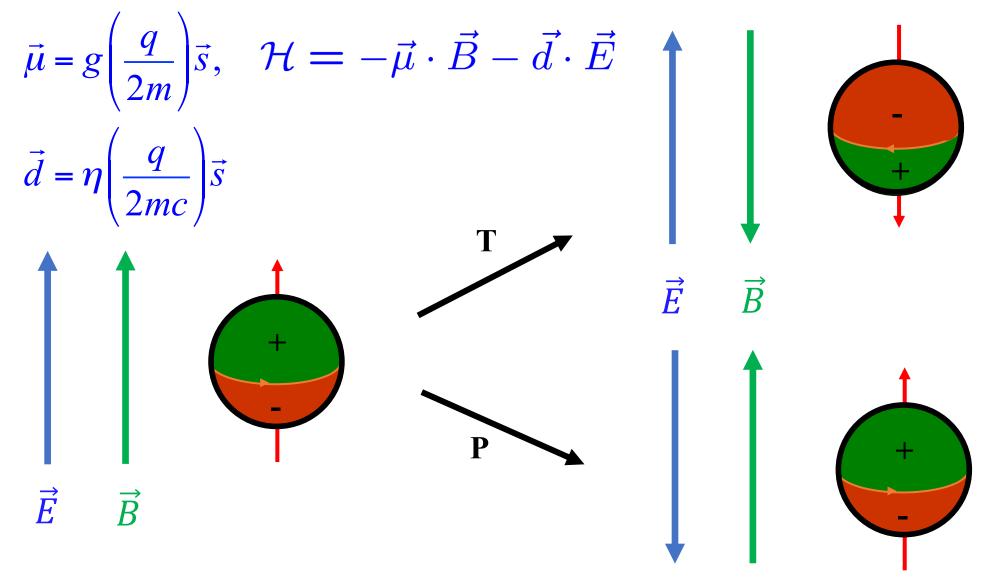
J T Volk Fermilab Dec 2008

Timeline

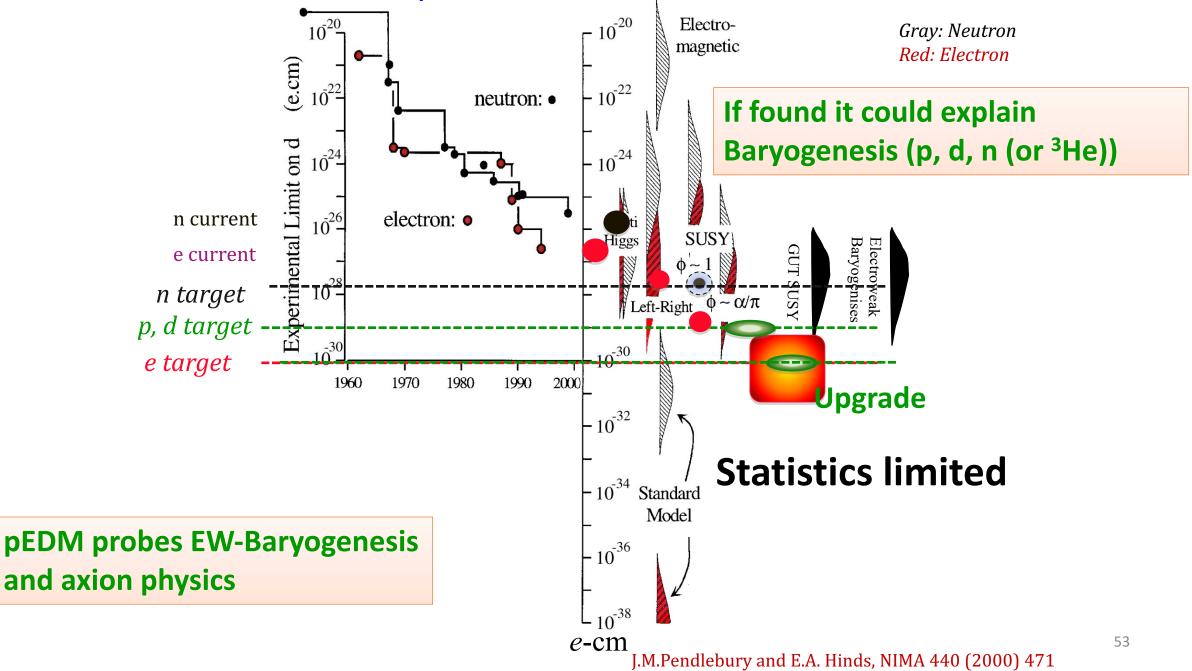
- Snowmass, white paper, CDR, proposal/TDR, ring construction, storage.
- Possible to have interesting results within the decade.



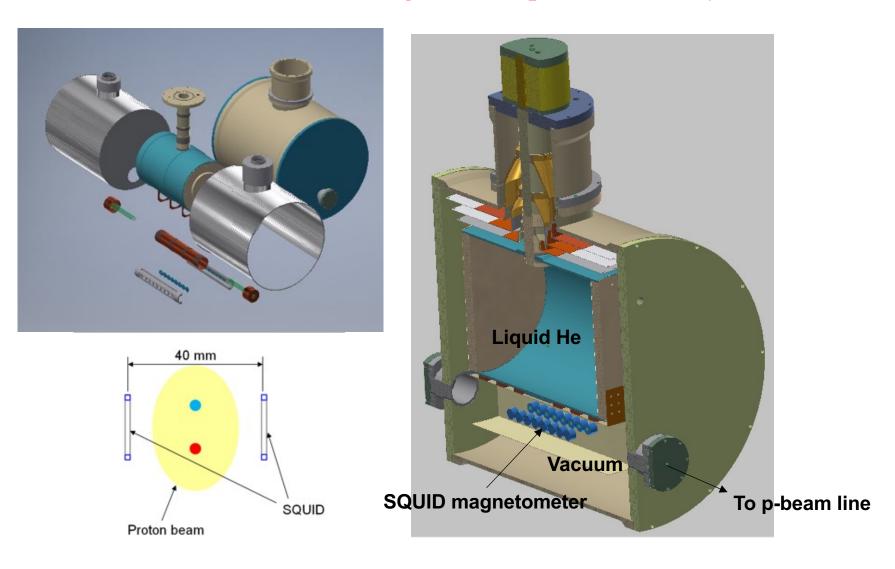
Lattice with 800 m circumference for a sensitive experiment on EDM, Dark Matter (DM) and Dark Energy (DE)


- Electric bending with cylindrically shaped E-field plates
 - Radial E-field: 4.4 MV/m, 4-cm plate separation

- Alternate-magnetic-focusing $(k_1 = -k_2)$
 - Simultaneous counter-rotating beams
 - Strong focusing in both horizontal and vertical planes


- Store Longitudinal, Radial and Vertical polarizations
 - Sensitive to EDM (L), DM/DE (R), and both (V)

A Permanent EDM Violates both T & P Symmetries:


Sensitivity to Rule on Several New Models

SQUID-based BPMs

Beam position monitor: SQUID array

Goal: sense counter-rotating beam separation to 10µm

Cylindrical Dewar: original design (KRISS)

SQUID-based BPMs, Korea

Next: Testing the concept at an accelerator.

- The new design is to be delivered by summer
- ► Will be 2fT√Hz
- We will make wire tests in Korea
- Would be good to test here at COSY

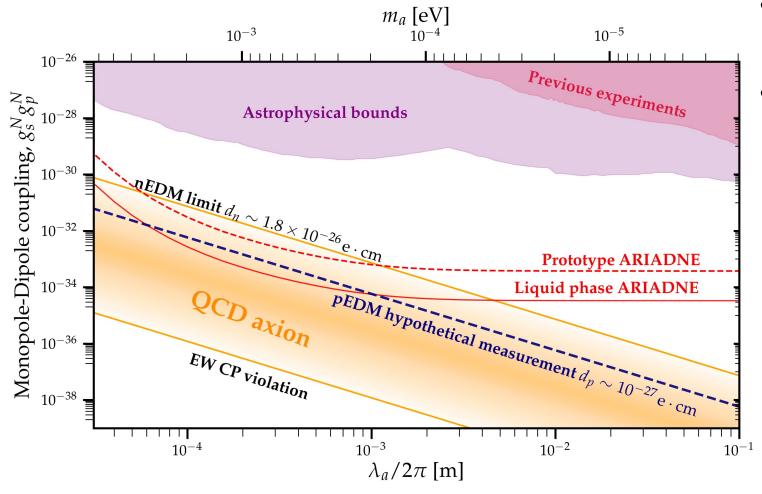
Electric quad-field from a displaced sextupole

m value for electric sextupoles

$$E_y = -2k^e xy$$
$$E_x = k^e (x^2 - y^2)$$

• Assume 100 um misalignment

$$E_y = 2 \times 200 \text{ kV/m}^3 \times 100 \text{ um} \times y$$
$$E_y = \left(\frac{E_0(n-1)}{R_0}\right)y = \left(\frac{E_0m}{R_0}\right)y$$

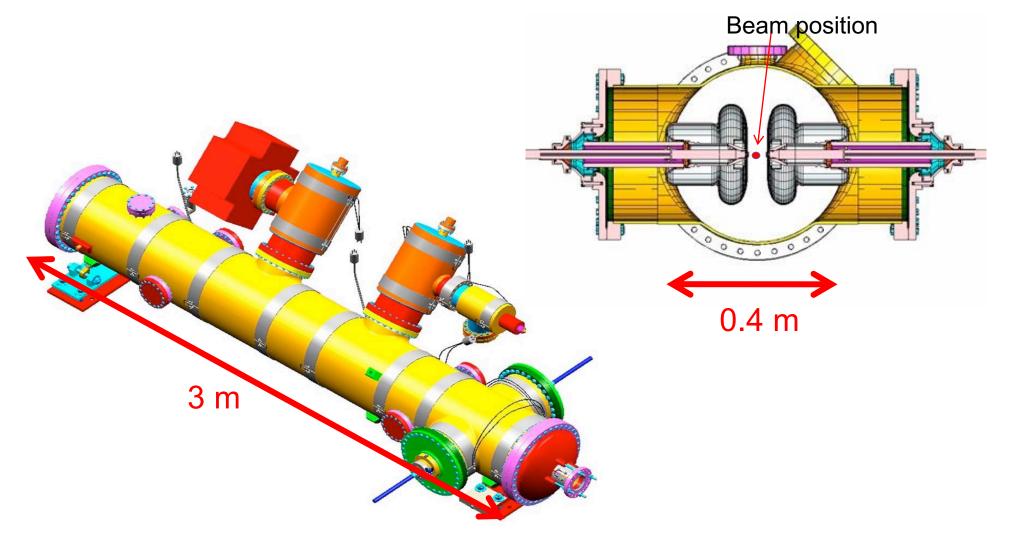

- Expected electric focusing: $m_6 = 2 \times 10^{-5}$
- Should be less with randomness

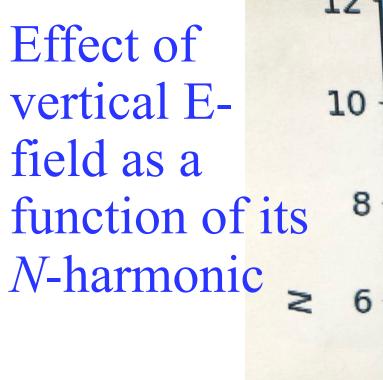
Zhanibek Omarov zhanik@kaist.ac.kr

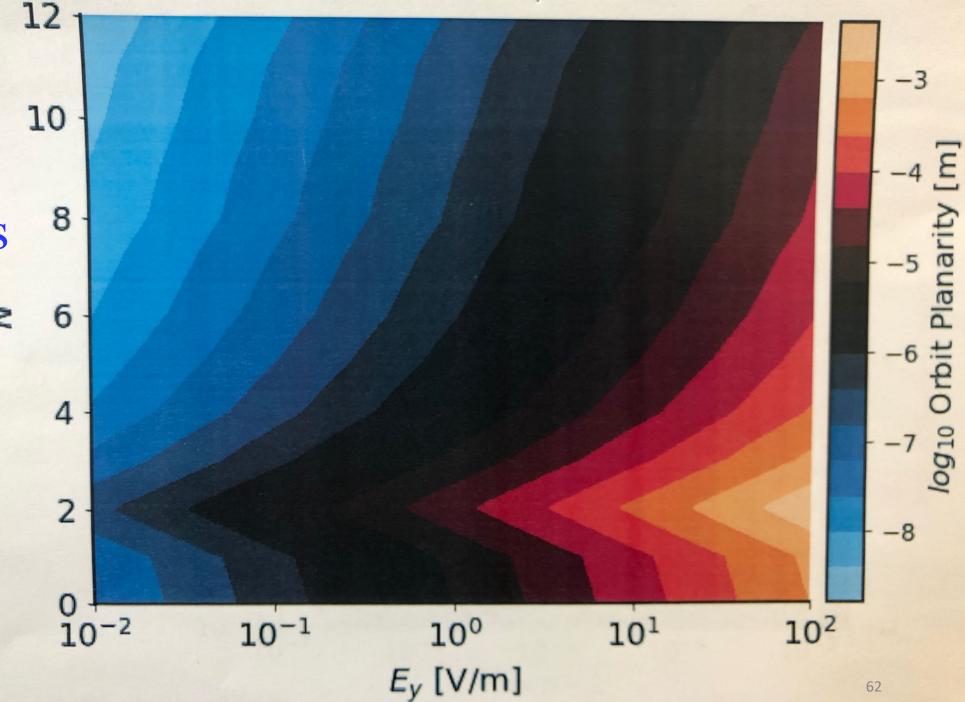
Large Surface Area Electrodes

Parameter	Tevatron pbar-p Separators	BNL K-pi Separators	pEDM (low risk)	
Length/unit	2.6m	4.5m	5×2.5m	
Gap,	5cm,	10cm,	4cm,	
E-field	7.2 MV/m	4 MV/m	4.5 MV/m	
Height	0.2m	0.4m	0.2m	
Number	24	2	48	
Max. HV	±(150-180)KV	±200KV	±90KV	

ARIADNE and nucleon EDMs




- Combine with ARIADNE and nucleon EDM provides decisive information
- Scenario:
 - ARIADNE: Null axion
 - pEDM measure: $d_p \sim 10^{-27} \mathrm{e} \cdot \mathrm{cm}$
 - Exclude QCD axion independent of axion DM:


 $0.2 \text{ meV} \leq m_a \leq 3 \text{meV}$

Y. K. Semertzidis and S. Youn. , 2104.14831

E-field plate modules: The (24) FNAL Tevatron ES-separators ran for years with harder specs

Polarimeter analyzing power at P_{magic} is great

Analyzing power can be further optimized

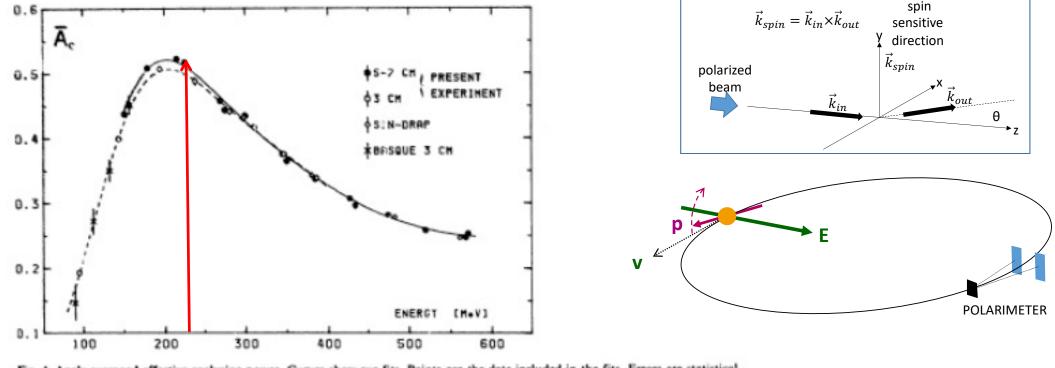
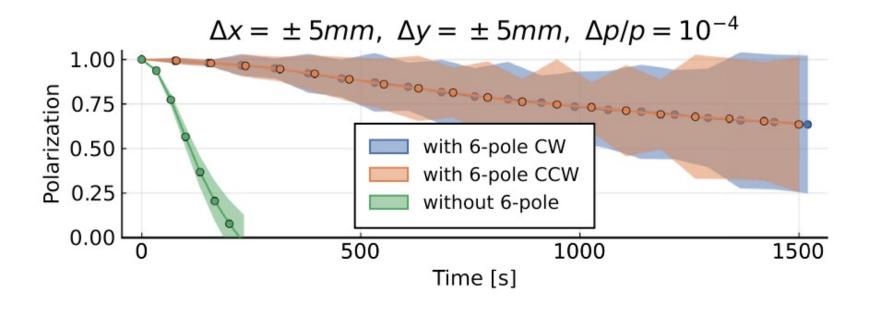
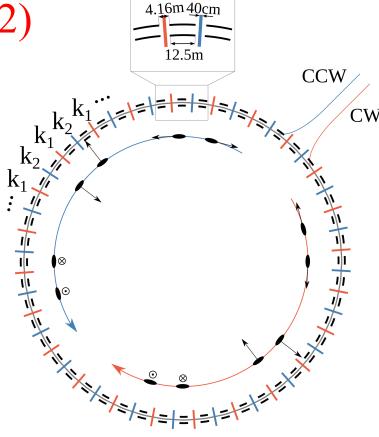


Fig. 4. Angle-averaged effective analyzing power. Curves show our fits. Points are the data included in the fits. Errors are statistical only

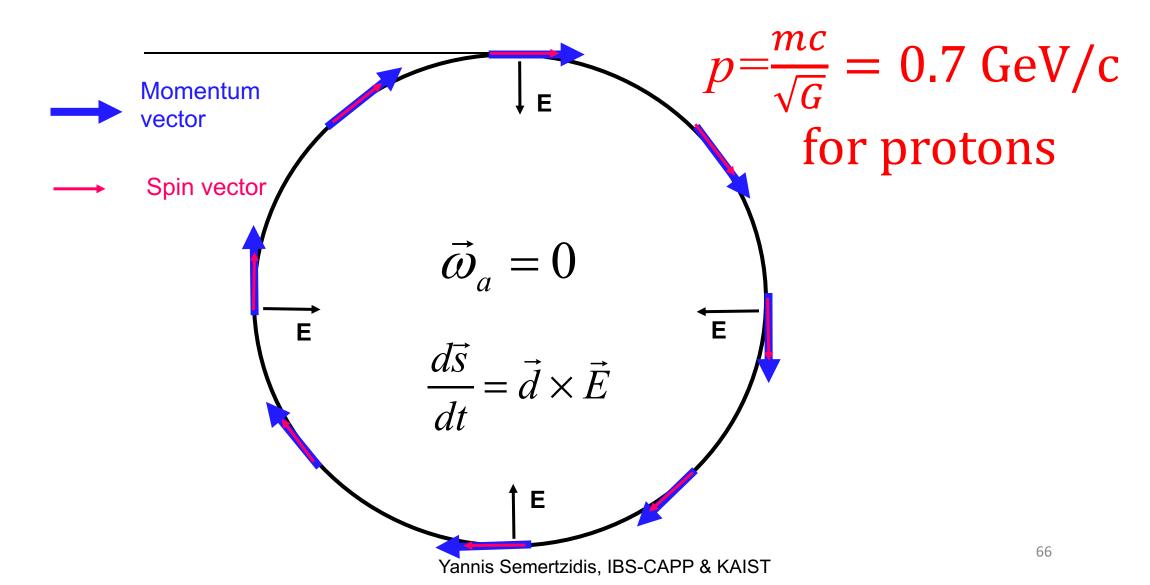
Fig.4. The angle averaged effective analyzing power as a function of the proton kinetic energy. The magic momentum of 0.7GeV/c corresponds to 232MeV.


Spin Coherence Time


- Not all particles have same deviation from magic momentum, or same horizontal and vertical divergence (second order effects)
- They Cause a spread in the g-2 frequencies:

$$d\omega_a = a\vartheta_x^2 + b\vartheta_y^2 + c\left(\frac{dP}{P}\right)^2$$

 Correct by tuning plate shape/straight section length plus fine tuning with sextupoles (current plan) or cooling (mixing) during storage (under evaluation). Hybrid, symmetric lattice storage ring. Spin Coherence Time with sextupoles


Z. Omarov et al., PHYS. REV. D 105, 032001 (2022)

Hybrid (magnetic and elecric) sextupoles were used to achieve long SCT.

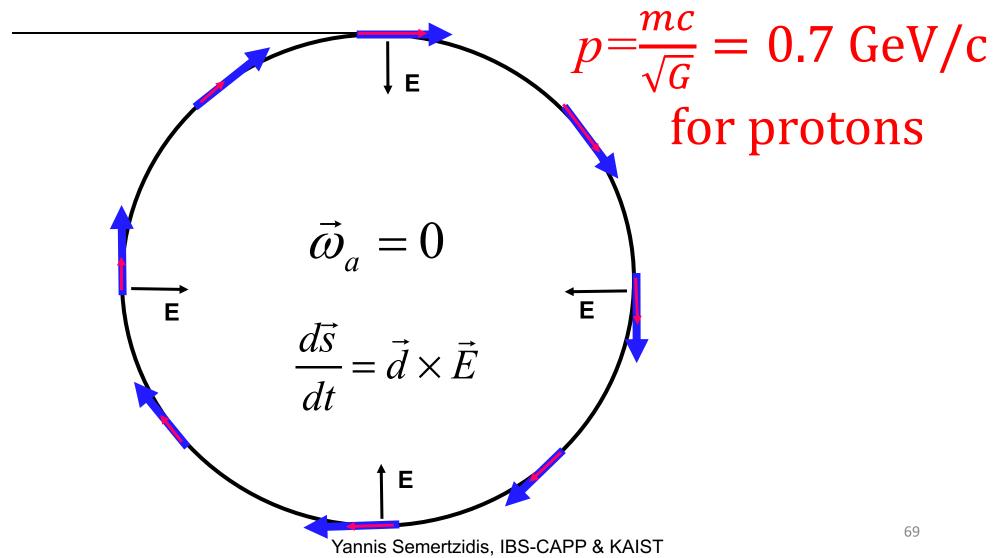
The sensitivity to EDM is optimum when the spin vector is kept aligned to the momentum vector

Physics strength comparison (Marciano)

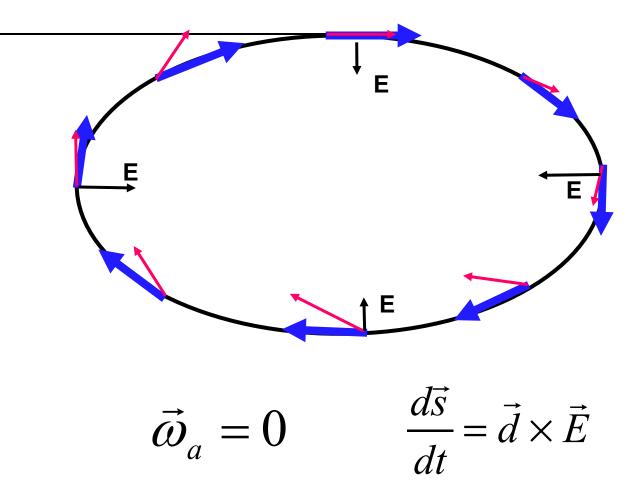
System	Current limit [e⋅cm]	Future goal	Neutron equivalent	
Neutron	<1.6 × 10 ⁻²⁶	~10 ⁻²⁸	10-28	
¹⁹⁹ Hg atom	<7 × 10 ⁻³⁰	<10 ⁻³⁰	10-26	
¹²⁹ Xe atom	<6 × 10 ⁻²⁷	~10 ⁻²⁹ -10 ⁻³¹	10 ⁻²⁵ -10 ⁻²⁷	
Deuteron		~10 ⁻²⁹	3 × 10 ⁻²⁹ - ←	From theta-QCD
nucleus			5×10 ⁻³¹ ←	From SUSY-like CPV
Proton nucleus	<2 × 10 ⁻²⁵	~10 ⁻²⁹	10 -29	67

How the srEDM exp. at 10⁻²⁹ *e*-cm works ✓ Required radial E-field <5 MV/m, for 40mm plate separation

✓ Beam and spin dynamics stable for required beam intensity


✓ Spin coherence time estimated >10³s using sextupoles (no stochastic cooling)

✓ Alternate magnetic focusing greatly shielding external B-fields


✓ Symmetric lattice significantly reducing systematic error sources

✓ Required ring planarity <0.1mm; CW & CCW beam separation <0.01mm

The spin precession relative to momentum in the plane is kept near zero. A vert. spin precession vs. time is an indication of an EDM (*d*) signal.

The spin precession relative to momentum in the plane is kept near zero. A vert. spin precession vs. time is an indication of an EDM (*d*) signal.

