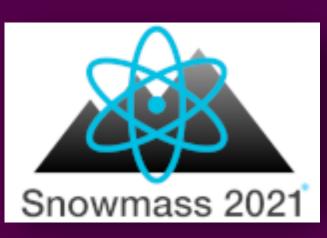
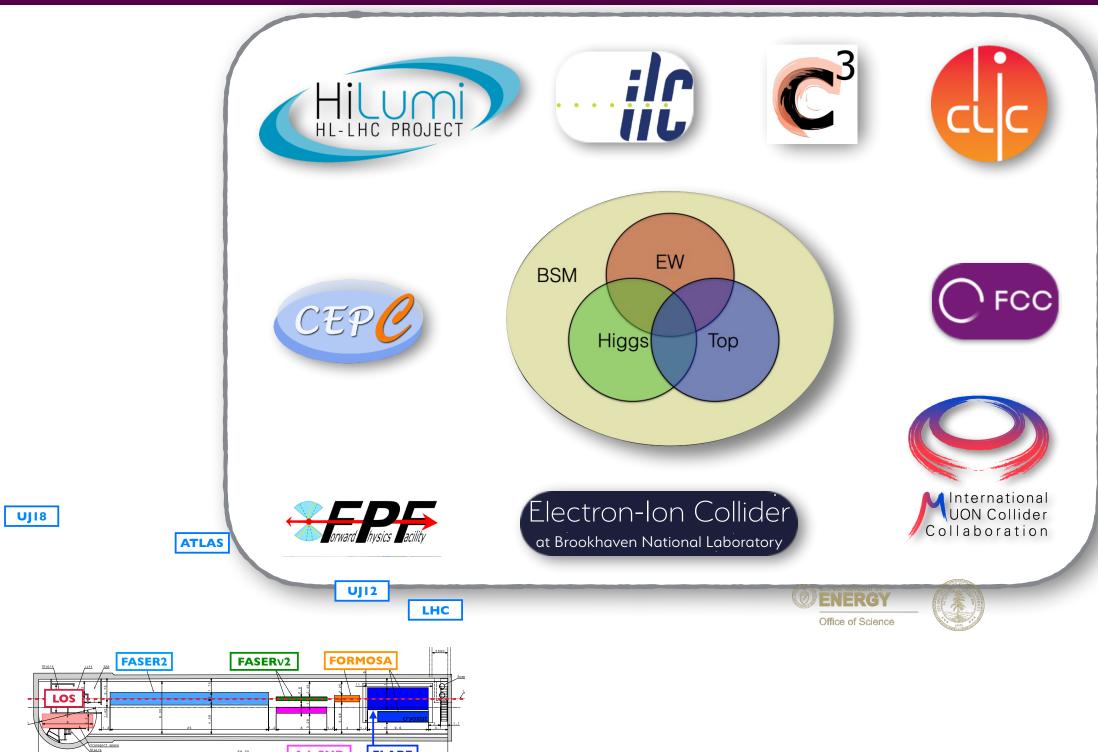

EF and RPF: Report from the Energy Frontier



<u>19th May 2022</u>

Snowmass Rare and Precision Measurements Frontier Spring Meeting Cincinnati, OH

IATIONAL CCELERATOR



- 1. Overview of the Energy frontier
- 2. Highlights and connections to RPF LOS
 - Electroweak scale precision physics
 - Higgs boson
 - Top quark
 - Electroweak & global fits
 - → QCD & Heavy ions
 - → BSM

Outline



- 1. Overview of the Energy frontier
- 2. Highlights and connections to RPF LOS
 - Electroweak scale precision physics
 - Higgs boson
 - Top quark
 - Electroweak & global fits
 - → QCD & Heavy ions
 - → BSM

Outline

The Energy Frontier mandate

Manuel Franco Sevilla

Snowmass RPF Spring meeting: **Report from the Energy Frontier**

Explore the TeV scale and beyond

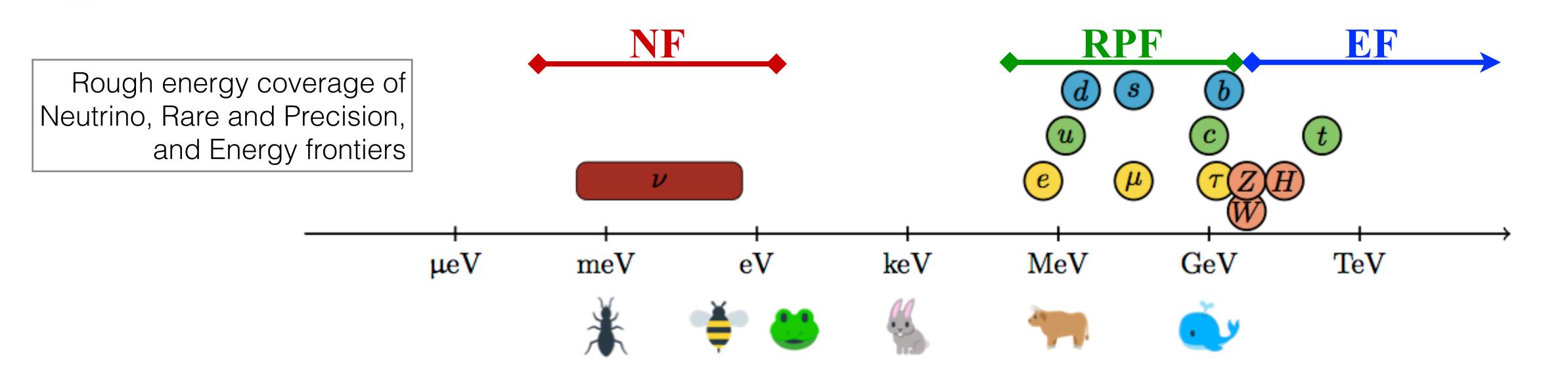
The Energy Frontier mandate

Explore the TeV scale and beyond

~ Large part of EF is about precision measurements, so more precisely

Precision measurements of the Higgs and vector bosons, top quark, and QCD, and exploration of the TeV scale and beyond

Manuel Franco Sevilla



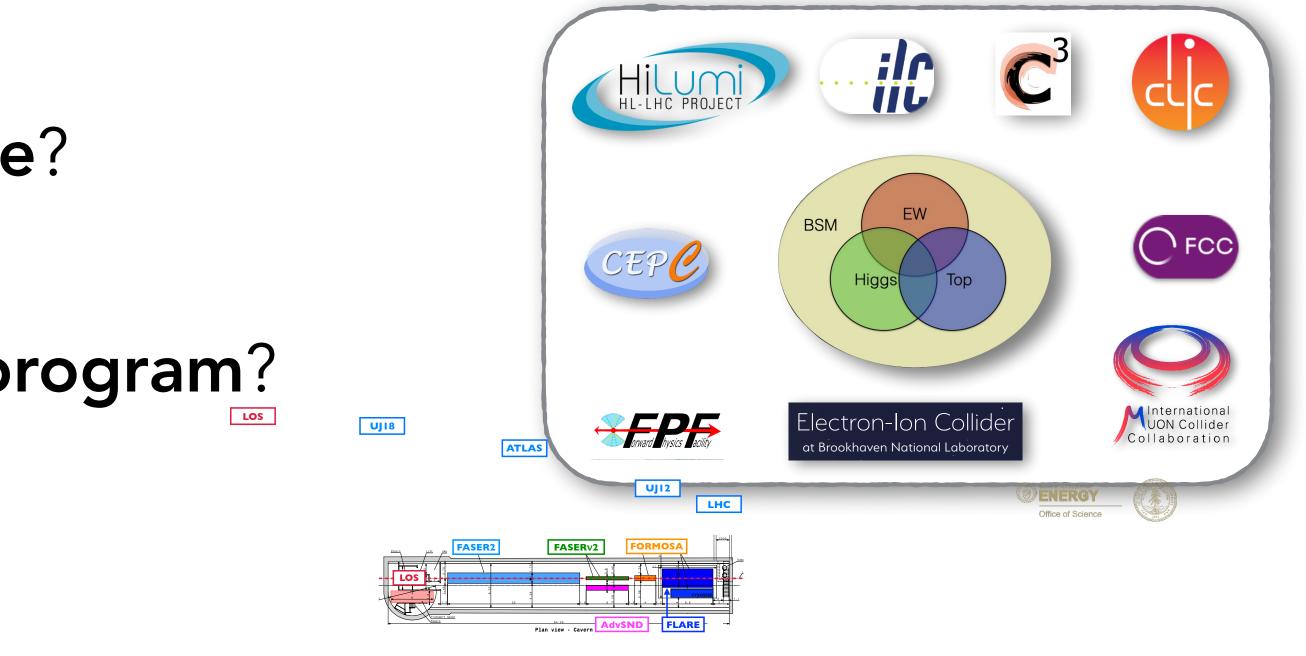
The Energy Frontier mandate

Explore the TeV scale and beyond

~ Large part of EF is about precision measurements, so more precisely

Precision measurements of the Higgs and vector bosons, top quark, and QCD, and exploration of the TeV scale and beyond

Manuel Franco Sevilla



~ What is the origin of the EW scale? ~ What is the **nature of QCD**? How do we best build the BSM program?

EF big questions

- FCC orward hysics acility UJ18 ATLAS

- ~ What is the origin of the EW scale? ~ What is the **nature of QCD**? How do we best build the BSM program? ~ How should the US be involved in near and far future energy-frontier machines after
 - → What could be the energy-frontier machines that follow the HL-LHC?
 - How can the US continue to play a leadership role in energy-frontier experiments?
 - How can the Snowmass process help develop a plan for the energy-frontier research and convince the community about our priorities?
 - Should we start entertaining the idea of a future collider in the US again?
 - + If so, what are our goals, the benefits for the US and the international community, and how can we get there?

EF big questions

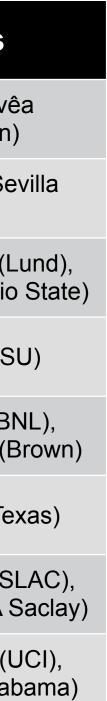
EF organization

Meenakshi Narain (Brown U)

Laura Reina (FSU)

Topical Group			Topical Group co-Conveners			
EF01		Higgs Boson properties and couplings	Sally Dawson (BNL)	Andrey Korytov (U Florida)	Caterina Vernieri (SLAC)	
EF02		EFO2 Higgs Boson as a portal to new physics	Patrick Meade (Stony Brook)	Isobel Ojalvo (Princeton)		
EF03	EW Physics	EFO3 Heavy flavor and top quark physics	Reinhard Schwienhorst (MSU)	Doreen Wackeroth (Buffalo)		
EF04		EVPrecision Phys. & constraining new phys.	Alberto Belloni (Maryland)	Ayres Freitas (Pittsburgh)	Junping Tian (Tokyo)	
EF05		FF05 Precision QCD	Michael Begel (BNL)	Stefan Hoeche (FNAL)	Michael Schmitt (NW)	
EF06	QCD and Strong	EF06 Hadronic structure and forward QCD	Huey-Wen Lin (MSU)	Pavel Nadolsky (SMU)	Christophe Royon (Kansas)	
EF07	Interactions	EF07 Heavy lons	Yen-Jie Lee (MIT)	Swagato Mukherjee (BNL)		
EF08		EF08 Model specific explorations	Jim Hirschauer (FNAL)	Elliott Lipeles (UPenn)	Nausheen Shah (Wayne State)	
EF09	BSM	EF09 More general explorations	Tulika Bose (UW-Madison)	Zhen Liu (Minnesota)	Simone Griso (LBL)	
EF10		EF10 Bark Matter at colliders	Caterina Doglioni (Lund)	LianTao Wang (Chicago)	Antonio Boveia (Ohio St.)	

Manuel Franco Sevilla

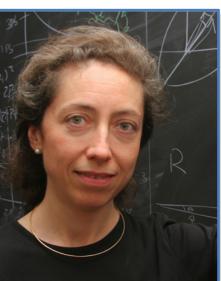


Alessandro Tricoli (BNL)

Frontier	Liaisons
Neutrino Physics	André de Gouvé (Northwestern
Rare Processes and Precision	Manuel Franco Se (Maryland)
Cosmic	Caterina Doglioni (L Antonio Boveia (Ohio
Theory	Laura Reina (FS
Accelerator	Dmitri Denisov (B Meenakshi Narain (B
Computational	Peter Onyisi (U.Te
Instrumentation	Caterina Vernieri (S Maksym Titov (CEA S
Community Engagement	Daniel Whiteson (I Sergei Gleyzer (Ala

EF organization

Meenakshi Narain (Brown U)


Laura Reina (FSU)

Topical Group			Topical Group co-Conveners			
EF01		Higgs Boson properties and couplings	Sally Dawson (BNL)	Andrey Korytov (U Florida)	Caterina Vernieri (SLAC)	
EF02		EFO2 Higgs Boson as a portal to new physics	Patrick Meade (Stony Brook)	Isobel Ojalvo (Princeton)		
EF03	EW Physics	EFO3 Heavy flavor and top quark physics	Reinhard Schwienhorst (MSU)	Doreen Wackeroth (Buffalo)		
EF04		EVPrecision Phys. & constraining new phys.	Alberto Belloni (Maryland)	Ayres Freitas (Pittsburgh)	Junping Tian (Tokyo)	
EF05		FF05 Precision QCD	Michael Begel (BNL)	Stefan Hoeche (FNAL)	Michael Schmitt (NW)	
EF06	QCD and Strong	EF06 Hadronic structure and forward QCD	Huey-Wen Lin (MSU)	Pavel Nadolsky (SMU)	Christophe Royon (Kansas)	
EF07	Interactions	EF07 Heavy lons	Yen-Jie Lee (MIT)	Swagato Mukherjee (BNL)		
EF08		EF08 Model specific explorations	Jim Hirschauer (FNAL)	Elliott Lipeles (UPenn)	Nausheen Shah (Wayne State)	
EF09	BSM	EF09 More general explorations	Tulika Bose (UW-Madison)	Zhen Liu (Minnesota)	Simone Griso (LBL)	
EF10		EF10 Bark Matter at colliders	Caterina Doglioni (Lund)	LianTao Wang (Chicago)	Antonio Boveia (Ohio St.)	

Manuel Franco Sevilla

Snowmass RPF Spring meeting: **Report from the Energy Frontier**

Alessandro Tricoli (BNL)

Why I'm talking today

Frontier	Liaisons
Neutrino Physics	André de Gouve (Northwestern
Rare Processes and Precision	Manuel Franco Se (Maryland)
Cosmic	Caterina Doglioni (I Antonio Boveia (Ohio
Theory	Laura Reina (FS
Accelerator	Dmitri Denisov (B Meenakshi Narain (I
Computational	Peter Onyisi (U.Te
Instrumentation	Caterina Vernieri (S Maksym Titov (CEA
Community Engagement	Daniel Whiteson (Sergei Gleyzer (Ala

139 white papers submitted

30 papers submitted to "General" EF (below), and **109** to the various Topical Groups (slides ahead)

Title The Forward Physics Facility: Sites, Experiments, and Physics Potential The Forward Physics Facility at the High-Luminosity LHC The Future Circular Collider: a Summary for the US 2021 Snowmass Process **Software and Computing for Small HEP Experiments Detector and Beamline Simulation for Next-Generation High Energy Physics Experim** The International Linear Collider **Physics with the Phase-2 ATLAS and CMS Detectors** In Search of Excellence and Equity in Physics An Impartial Perspective for Superconducting Nb3Sn coated Copper RF Cavities for I Japan's Strategy for Future Projects in High Energy Physics **High Energy & High Luminosity** YY **Colliders** C3:A 'Cool' Route to the Higgs Boson and Beyond The physics case of a 3 TeV muon collider stage Muon Collider Physics Summary Enabling U.S. participation in Future Higgs Factories Strategies for Beam-Induced Background Reduction at Muon Colliders Strategies for conformal REBCO windings Promising Technologies and R&D Directions for the Future Muon Collider Detectors Future Collider Options for the US A Muon Collider Facility for Physics Discovery Simulated Detector Performance at the Muon Collider Hybrid conformal REBCO dipole for a next hadron collider The Physics Case for a Neutrino Factory Higgs-Energy LEptoN (HELEN) Collider based on advanced superconducting radio frequency technology The CLIC project **Event Generators for High-Energy Physics Experiments** Circular Electron Positron Collider (CEPC) Particle Flow Calorimetry Physics at Future Colliders: the Interplay Between Energy and Luminosity

Manuel Franco Sevilla

Green: also submitted to RPF

	GIECHI AISU SUDII	
	Authors	arXiv
	L. A. Anchordoqui, A. Ariga, T. Ariga, et al	2109.109
	J. L. Feng, F. Kling, M. Hall Reno, et al	2203.050
	G. Bernardi, E. Brost, D. Denisov, et al	2203.065
	D. Casper, M. Elena Monzani, B. Nachman, et al	2203.076
ments	S. Banerjee, D. N. Brown, D. N. Brown, et al	2203.076
	A. Aryshev, T. Behnke, M. Berggren, et al	2203.076
	The ATLAS and CMS Collaborations.	link
	E. Barzi, S. James Gates Jr., R. Springer.	2203.103
Future Accelerators	E. Barzi, B. C. Barish, R. A. Rimmer, et al	2203.097
	M. Endo, K. Hamaguchi, M. Ibe, et al	2203.139
	E. Barzi, B. Barish, W. A. Barletta, et al	2203.083
	M. Bai, T. Barklow, R. Bartoldus, et al	2110.1580
	J. De Blas, D. Buttazzo, R. Capdevilla, et al	2203.0726
	C.Aimè, A.Apyan, M.Attia Mahmoud, et al	2203.0725
	K. Black, K. Bloom, J.E. Brau, et al	2203.0625
	D.Ally, L. Carpenter, T. Holmes, et al	2203.0677
	J. Rogers, P. McIntyre, T. Elliott, et al	2203.0680
	S. Jindariani, F. Meloni, N. Pastrone, et al	2203.0722
	P. C. Bhat, S. Jindariani, G. Ambrosio, et al	2203.0808
	D. Stratakis, N. Mokhov, M. Palmer, et al	2203.0803
	N. Bartosik, K. Krizka, S. Pagan Griso, et al	2203.0796
	P. M McIntyre.	2203.0813
	A. Bogacz, V. Brdar, A. Bross, et al	2203.0809
	S. Belomestnykh, P.C. Bhat, A. Grassellino, et al	2203.0821
	O. Brunner, P. N. Burrows, S. Calatroni, et al	2203.0918
	J. M. Campbell, M. Diefenthaler, T. J. Hobbs, et al	2203.1111
	C.Accelerator Study Group.	2203.0945
	R. Ruchti, K. Kruger.	2203.1513
	Z. Liu, L. Wang	2205.0003

Facilities are main connection to RPF

Snowmass 2021	Snowmass 2021 Higgs Factory Study Scenarios							
Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{\mathrm{int}}$	~ The Hig	as an	id po	ssib
			e^{-}/e^{+}	$ ab^{-1} $				
HL-LHC	pp	14 TeV		6	BSM ph	ysics	will c	driv
ILC and C^3	ee	250 GeV	$\pm 80/\pm 30$	2	high-ene	erav	facili	tv
c.o.m almost		$350 \mathrm{GeV}$	$\pm 80' \pm 30$	0.2				
similar		$500 \mathrm{GeV}$	$\pm 80' \pm 30$	4	Probably a	a good	place	for F
		1 TeV	$\pm 80/\pm 20$	8		•		
CLIC	ee	380 GeV	$\pm 80/0$	1				
		1.5 TeV	$\pm 80/0$	2.5	Snowmass 2021 EF Di	scovery Co	ollider Scer	narios
		$3.0 { m TeV}$	$\pm 80'/0$	5	Collider	Type	\sqrt{s}	$\mathcal{L}_{\mathrm{int}}$
								ab^{-1}
CEPC	ee	M_Z		16	HE-LHC	pp	27 TeV	15
		$2M_W$		2.6				
		$240 \mathrm{GeV}$		5.6	FCC-hh	pp	100 TeV	30
FCC-ee	ee	M_Z		150	LHeC	ер	1.3 TeV	1
		$2M_W$		10	FCC-eh	ep	3.5 TeV	2
		$240 \mathrm{GeV}$		5				
		$2 M_{top}$		1.5	High energy muon-collie	der $\mu\mu$	3 TeV	
		L					10 TeV	10
muon-collider (higgs)	$\mu\mu$	125 GeV		0.02			30 TeV	10

Manuel Franco Sevilla

ole direct detection of e decision on next

RPF measurements too!

Effort to homogenize results according to these benchmark scenarios

139 white papers \rightarrow 5 EF reports

Topical Group

EF01		Higgs Boson properties and couplings
EF02		Higgs Boson as a portal to new physics
EF03	EW Physics	Heavy flavor and top quark physics
EF04		EW Precision Phys. & constraining new phys.
EF05	QCD and Strong	Precision QCD
EF06		Hadronic structure and forward QCD
EF07	Interactions	Heavy lons
EF08		Model specific explorations
EF09	BSM	More general explorations
EF10		Dark Matter at colliders

Snowmass RPF Spring meeting: Report from the Energy Frontier

EF01+EF02: Higgs boson

EF03: HF production & Top quark EF04: Electroweak & Global fits

EF05+EF06+EF07: QCD & Heavy ions

EF08+EF09+EF10: BSM

First drafts being reviewed internally, public drafts on May 31

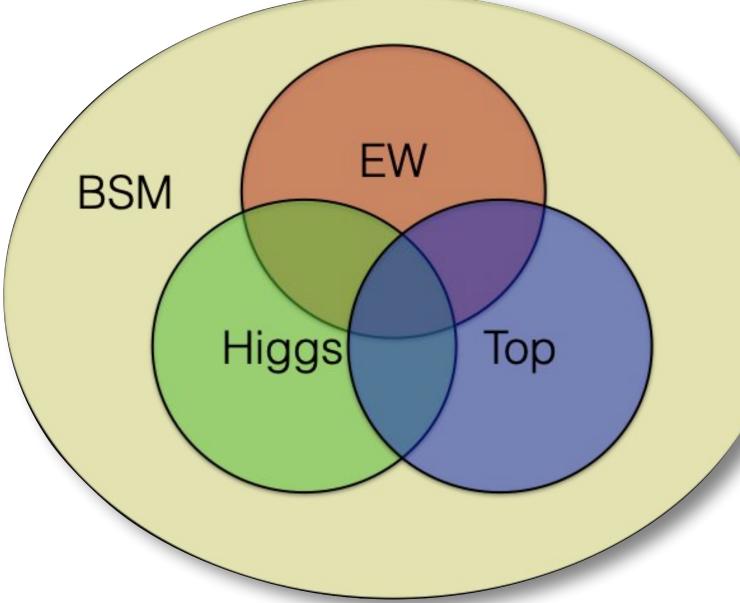
Electroweak scale precision physics

<u>Reports</u>

EF01+EF02: Higgs boson EF03: HF production & Top quark EF04: Electroweak & Global fits

~ EW precision measurements complement direct searches for NP Tool similar to flavor, very powerful beyond energy reach

~ Higgs boson most exciting discovery/confirmation in this century


- Traditionally, discovery of particles followed by collider to study particles + Eg, LEP following the discovery of W and Z at UA1/UA2
- The Higgs boson will be key in selecting next collider

~ Evaluate the reach of various options with global fits to EW observables

- Inputs from Higgs, top quark, and EW measurements
- Can help to first detect BSM effects and then identify the model

Measuring the EW scale

24 papers submitted to EF01+EF02

TG	Title
EFOI	Ultrafast Inorganic Crystals with Mass Production Capability for Futur
EFOI	Higgs Factory Considerations
EFOI	Tree-level Interference in VBF production of Vh
EFOI	Study of the $h\gamma Z$ coupling at the ILC
EFOI	Measuring the CP properties of the Higgs sector at electron-positron colliders
EFOI	Improving Di-Higgs Sensitivity at Future Colliders in Hadronic Final States with Machine Le
EFOI	CERC - Circular e+e- Collider using Energy-Recovery Linac
EFOI	The ReLiC: Recycling Linear e+e– Collider
EFOI	Directly Probing the CP-structure of the Higgs-Top Yukawa at HL-LHC and Future Colliders
EFOI	Complex Scalar Singlet Model Benchmarks for Snowmass
EFOI	Strategy for Understanding the Higgs Physics:The Cool Copper Collider
EFOI	Higgs Self Couplings Measurements at Future proton-proton Colliders
EFOI	Expected Sensitivity to Invisible Higgs Boson Decays at the ILC with the SiD Detector
EFOI	Prospects for the Measurement of the Standard Model Higgs Pair Production at the Muon
EFOI	Strange quark as a probe for new physics in the Higgs sector
EFOI	XCC:An X-ray FEL-based $\gamma\gamma$ Collider Higgs Factory
EFOI	High Precision Higgs from High Energy Muon Colliders
EFOI	Higgs boson decay to charmonia via c-quark fragmentation
EFOI	Jet Flavour Tagging for Future Colliders with Fast Simulation
EF02	Good things to do with extra Higgs doublets
EF02	A short overview on low mass scalars at future lepton colliders
EF02	Higgs Coupling Sensitivities and Model-Independent Bounds on the Scale of New Physics
EF02	Study of Electroweak Phase Transition in Exotic Higgs Decays at the CEPC
EF02	Detection of Early-Universe Gravitational Wave Signatures and Fundamental Physics

Manuel Franco Sevilla

Green: also submitted to RPF

	Authors	arXiv
re High-Rate Experiments	C. Hu, L. Zhang, R. Zhu	2203.067
	J.A. Bagger, B. C. Barish, S. Belomestnykh, et al	2203.0616
	C. Paranjape, D. Stolarski, Y. Wu	2203.0572
	Y.Aoki, K. Fujii, J.Tian	2203.0720
	I. Božović-Jelisavucić, N.Vukausinović, D. Jeans	2203.068
earning	D. Diaz, J. Duarte, S. Ganguly, et al	2203.0735
	V. N Litvinenko, N. Bachhawat, M. Chamizo-Llatas, et al	2203.0735
	V. N Litvinenko, N. Bachhawat, M. Chamizo-Llatas, et al	2203.0647
	R. Kumar Barman, M. E. Cassidy, Z. Dong, et al	2203.0812
	S.Adhikari, S. D. Lane, I. M. Lewis, et al	2203.0745
	S. Dasu, E.A. Nanni, M. E. Peskin, et al	2203.0764
	A.Taliercio, P. Mastrapasqua, C. Caputo, et al	2203.0804
	C. Potter, A. Steinhebel, J. Brau, et al	2203.0833
n Colliders	K. Black, T. Bose, S. Dasu, et al	2203.0887
	A.Albert, M. J. Basso, S. K. Bright-Thonney, et al	2203.0753
	T. Barklow, S. Dong, C. Emma, et al	2203.0848
	M. Forslund, P. Meade	2203.0942
	T. Han, A. K. Leibovich, Y. Ma, et al	2202.0827
	F. Bedeschi, L. Gouskos, M. Selvaggi	2202.0328
	H. Davoudiasl, I. M. Lewis, M. Sullivan	2203.0139
	T. Robens	2203.082
	F.Abu-Ajamieh, S. Chang, M. Chen, et al	2203.095
	Z.Wang, X. Zhu, E. E Khoda, et al	2203.1018
	R. Caldwell, Y. Cui, H. Guo, et al	2203.0797

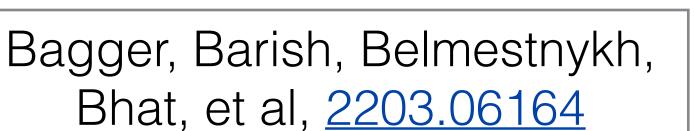
21 papers submitted to EF03+EF04

TG	Title	Authors	arXiv
EF03	On the modeling uncertainties of ttbar $W\pm$ multi-lepton signatures	G. Bevilacqua, H.Y. Bi, F. Febres Cordero, et al	2109.151
EF03	Azimuthal angular correlation as a new boosted top jet substructure	Z.Yu, CP.Yuan	2203.027
EF03	Higher-order corrections for t tbar production at high energies	N. Kidonakis	2203.036
EF03	Optimising top-quark threshold scan at CLIC using genetic algorithm	K. Nowak, A. Filip Zarnecki	2103.005
EF03	Probing heavy-flavor parton distribution functions at hadron colliders	K. Xie, M. Guzzi, P. Nadolsky	2203.062
EF03	Top-quark mass extraction from t tbar j+X events at the LHC: theory predictions	S. Alioli, J. Fuster, M. Vittoria Garzelli, et al	2203.073
EF03	Dependence of the top-quark mass measured in top-quark pair production on the parton distribution functions at the LHC	J. Gombas, J. Fein, S. Sawford, et al	2203.080
EF03	Implications of Energy Peak for Collider Phenomenology:Top Quark Mass Determination and Beyond	K.Agashe, S.Airen, R. Franceschini, et al	2204.029
EF03	Prospects for measurements of the bottom quark mass	J.Aparisi, J. Fuster, A. Hoang, et al	2203.169
EF03	Prospects for the measurement of top-quark couplings	G. Durieux, A. Gutiérrez Camacho, L. Mantani, et al	2205.02
EF04	Belle II physics reach and plans for the next decade and beyond	Belle II Collaboration	<u>link</u>
EF04	Upgrading SuperKEKB with a Polarized Electron Beam: Discovery Potential and Proposed Implementation	S. Banerjee, J. Michael Roney (for the US Belle II and polarization upgrade Groups)	<u>link</u>
EF04	Longitudinally polarized ZZ scattering at the Muon Collider	T.Yang, S. Qian, Z. Guan, et al	2107.135
EF04	Vector Boson Scattering Processes: Status and Prospects	D. Buarque Franzosi, M. Gallinaro, R. Ruiz, et al	2106.013
EF04	Vector boson fusion at multi-TeV muon colliders	A. Costantini, F. De Lillo, F. Maltoni, et al	2005.102
EF04	The Effective Vector Boson Approximation in High-Energy Muon Collisions	R. Ruiz, A. Costantini, F. Maltoni, et al	2111.024
EF04	Measurement of ALR using radiative return at ILC 250	T. Mizuno, K. Fujii, J. Tian	2203.079
EF04	Anomalous quartic gauge couplings at a muon collider	B.Abbott, A.Apyan, B.Azartash-Namin, et al	2203.08
EF04	Measuring the tau polarization at ILC	K.Yumino, D. Jeans	2203.076
EF04	Sensitivity to longitudinal vector boson scattering in $W\pm W\pm jj$ at future hadron colliders	A.Apyan, C. Mwewa, L. Nedic, et al	2203.079
EF04	Electroweak fragmentation at high energies	T. Han, Y. Ma, K. Xie	2203.111
EF04	SMEFT at the LHC and Beyond	W. Shepherd	2203.074
EF04	RADiCAL: Precision-timing, Ultracompact, Radiation-hard Electromagnetic Calorimetry	T. Anderson, T. Barbera, D. Blend, et al	2203.128

Manuel Franco Sevilla

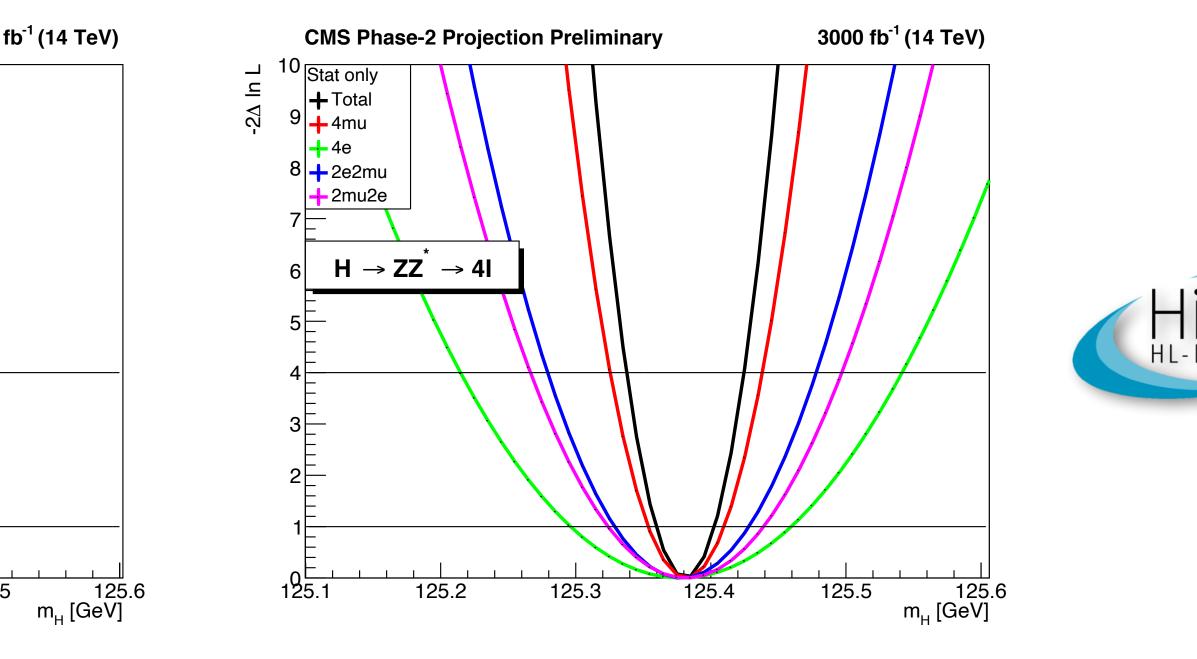
Green: also submitted to RPF

40



- 1. Precision measurement of Higgs couplings to SM fermions and gauge bosons
- 2. Measurement of Higgs self-couplings
- 3. Sensitivity to rare or non-SM Higgs decays
- 4. Discovery potential for new non-SM physics
- 5. Ability to directly measure top electroweak and Yukawa couplings
- 6. BSM sensitivity via precision top/W masses, top width, Z-pole parameters
- 7. Ability to improve precision of the strong coupling constant

Physics considerations of a Higgs factory



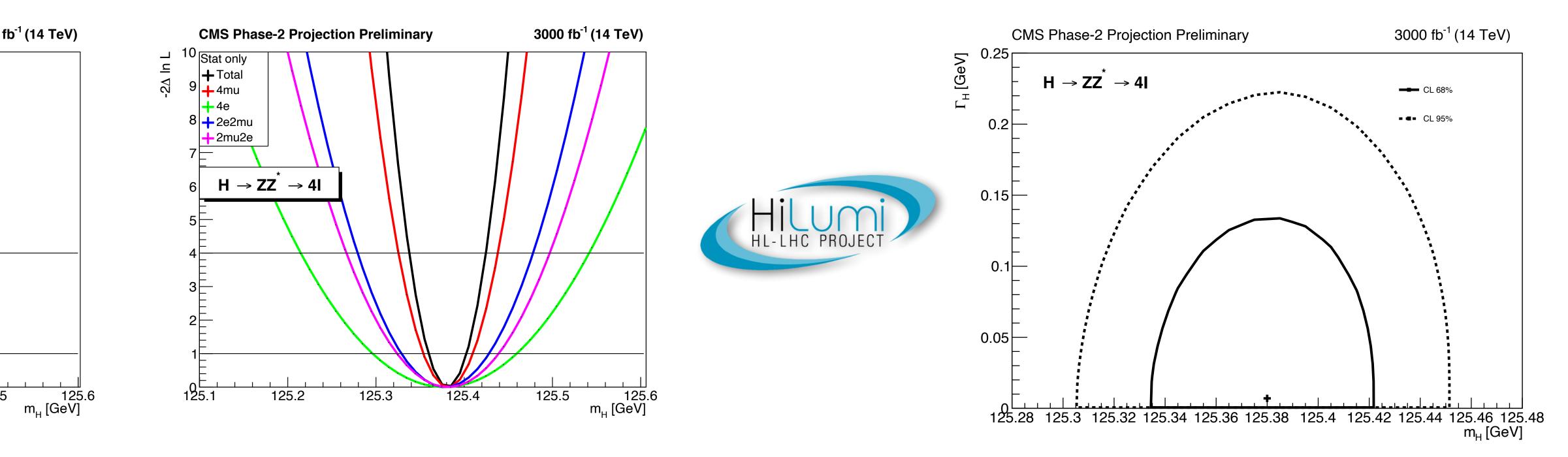
Bhat, et al, <u>2203.06164</u>

Updated HL-LHC mass/width projections for Snowmass



Higgs mass uncertainty (±stat ±syst) $(\pm 22 \pm 20)$ MeV from $H \rightarrow ZZ \rightarrow 4\ell$ $(\pm 20 \pm 70)$ MeV from $H \rightarrow \gamma\gamma$ Detector upgrade improves 4µ resolution by 25% and 4ℓ yield by 17%

CMS PAS FTR-21-007


Snowmass RPF Spring meeting: **Report from the Energy Frontier**

Updated HL-LHC mass/width projections for Snowmass

Higgs mass uncertainty (±stat ±syst) $(\pm 22 \pm 20)$ MeV from $H \rightarrow ZZ \rightarrow 4\ell$ $(\pm 20 \pm 70)$ MeV from $H \rightarrow \gamma\gamma$ Detector upgrade improves 4μ resolution by 25%and 4ℓ yield by 17%

Already have a Higgs factory approved: HL-LHC

Direct measurement $\Gamma_H < 177$ MeV (95% CL), limited by lineshape resolution Indirect measurement $\Gamma_H = 4.1^{+0.7}_{-0.8}$ MeV assuming SM offshell/onshell Higgs production

Higgs factory scenarios

Snowmass 2021 Higgs Factory Study Scenarios

		$\mathcal{D}[07]$	
Type	\sqrt{S}	P[70]	$\mathcal{L}_{\mathrm{int}}$
		e^{-}/e^{+}	$ ab^{-1} $
рр	14 TeV		6
11			
ee	250 GeV	$\pm 80/\pm 30$	2
	350 GeV	$\pm 80/\pm 30$	0.2
	500 GeV	$\pm 80 / \pm 30$	4
	1 TeV	$\pm 80/\pm 20$	8
ee	380 GeV	$\pm 80/0$	1
	1.5 TeV	,	2.5
	3.0 TeV		5
ee	M_Z		16
	$2M_W$		2.6
			5.6
ee	M_Z		150
			10
			5
			1.5
$\mu\mu$	125 GeV		0.02
	Type P P ee ee ee ee	Type \sqrt{s} pp 14 TeV ee 250 GeV 350 GeV 350 GeV 500 GeV 1 TeV ee 380 GeV 1 TeV 3.0 TeV ee M_Z 240 GeV 240 GeV 240 GeV 240 GeV 240 GeV 240 GeV 1 TeV 10 GeV	Type \sqrt{s} $\mathcal{P}[\%]$ e^-/e^+ pp 14 TeV ee 250 GeV $\pm 80/ \pm 30$ 350 GeV $\pm 80/ \pm 30$ 500 GeV $\pm 80/ \pm 30$ 500 GeV $\pm 80/ \pm 30$ 1 TeV $\pm 80/ \pm 30$ 1 TeV $\pm 80/ \pm 30$ 20 $\pm 80/ \pm 30$ 1 TeV $\pm 80/ \pm 30$ 1 TeV $\pm 80/ \pm 30$ 20 $\pm 80/ \pm 30$ 1 TeV $\pm 80/ \pm 30$ 20 $\pm 30/ \pm 30$

✓ Run at 250+ GeV $\checkmark \text{Measure Z with } e^+e^- \rightarrow Z\gamma$ ✓ Dedicated Z and WW runs possible with small modifications ✓ Up to 80%/30% polariz. of e^{-}/e^{+}

Manuel Franco Sevilla

 High-luminosity e⁺e⁻ colliders proposed as Higgs factories can be used to study EW scale too

✓ Run at 350+ GeV \checkmark Measure Z with $e^+e^- \rightarrow Z\gamma$ ✓ Dedicated Z and WW runs possible with small modifications \checkmark Up to 80%/0% polariz. of e^{-}/e^{+}

Higgs factory scenarios

Snowmass 2021 Higgs Factory Study Scenarios

Collider	Type	\sqrt{S}	$\mathcal{P}[\%]$	$\mathcal{L}_{\mathrm{int}}$
			e^{-}/e^{+}	ab^{-1}
HL-LHC	pp	14 TeV		6
ILC and C^3	ee	250 GeV	$\pm 80/\pm 30$	2
c.o.m almost		$350 \mathrm{GeV}$	$\pm 80/\pm 30$	0.2
similar		$500 \mathrm{GeV}$	$\pm 80/\pm 30$	4
		1 TeV	$\pm 80/\pm 20$	8
CLIC	ee	380 GeV	$\pm 80/0$	1
		1.5 TeV	$\pm 80/0$	2.5
		3.0 TeV	$\pm 80/0$	5
CEPC	ee	M_Z		16
		$2M_W$		2.6
		240 GeV		5.6
FCC-ee	ee	M_Z		150
		$2M_W$		10
		$240 \mathrm{GeV}$		5
		$2 M_{top}$		1.5
muon-collider (higgs)	$\mu\mu$	$125 \mathrm{GeV}$		0.02

 \sim High-luminosity e⁺e⁻ colliders proposed as **Higgs** factories can be used to study EW scale too

✓ Run at 250+ GeV \checkmark Measure Z with $e^+e^- \rightarrow Z\gamma$ ✓ Dedicated Z and WW runs possible with small modifications \checkmark Up to 80%/30% polariz. of e^{-}/e^{+}

✓ No polarization

Manuel Franco Sevilla

✓ Run at 350+ GeV \checkmark Measure Z with $e^+e^- \rightarrow Z\gamma$ ✓ Dedicated Z and WW runs possible with small modifications \checkmark Up to 80%/0% polariz. of e^{-}/e^{+}

✓ Runs at Z, WW, HZ, tt ✓ No polarization ✓ Similar Z sample (100 ab⁻¹)

Higgs factory scenarios

Snowmass 2021 Higgs Factory Study Scenarios

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mid \mathcal{L}_{ ext{int}} \mid$
			e^-/e^+	ab^{-1}
HL-LHC	pp	14 TeV		6
ILC and C^3	ee	250 GeV	$\pm 80/\pm 30$	2
c.o.m almost		350 GeV	$\pm 80/\pm 30$	0.2
similar		500 GeV	$\pm 80/\pm 30$	4
		1 TeV	$\pm 80/\pm 20$	8
CLIC	ee	380 GeV	$\pm 80/0$	1
		1.5 TeV	$\pm 80/0$	2.5
		3.0 TeV	$\pm 80/0$	5
CEPC	ee	M_Z		16
		$2M_W$		2.6
		240 GeV		5.6
FCC-ee	ee	M_Z		150
		$2M_W$		10
		240 GeV		5
		$2 M_{top}$		1.5
muon-collider (higgs)	$\mu\mu$	125 GeV		0.02
	, ,			

 \sim High-luminosity e⁺e⁻ colliders proposed as **Higgs** factories can be used to study EW scale too

✓ Run at 250+ GeV \checkmark Measure Z with $e^+e^- \rightarrow Z\gamma$ ✓ Dedicated Z and WW runs possible with small modifications \checkmark Up to 80%/30% polariz. of e^{-}/e^{+}

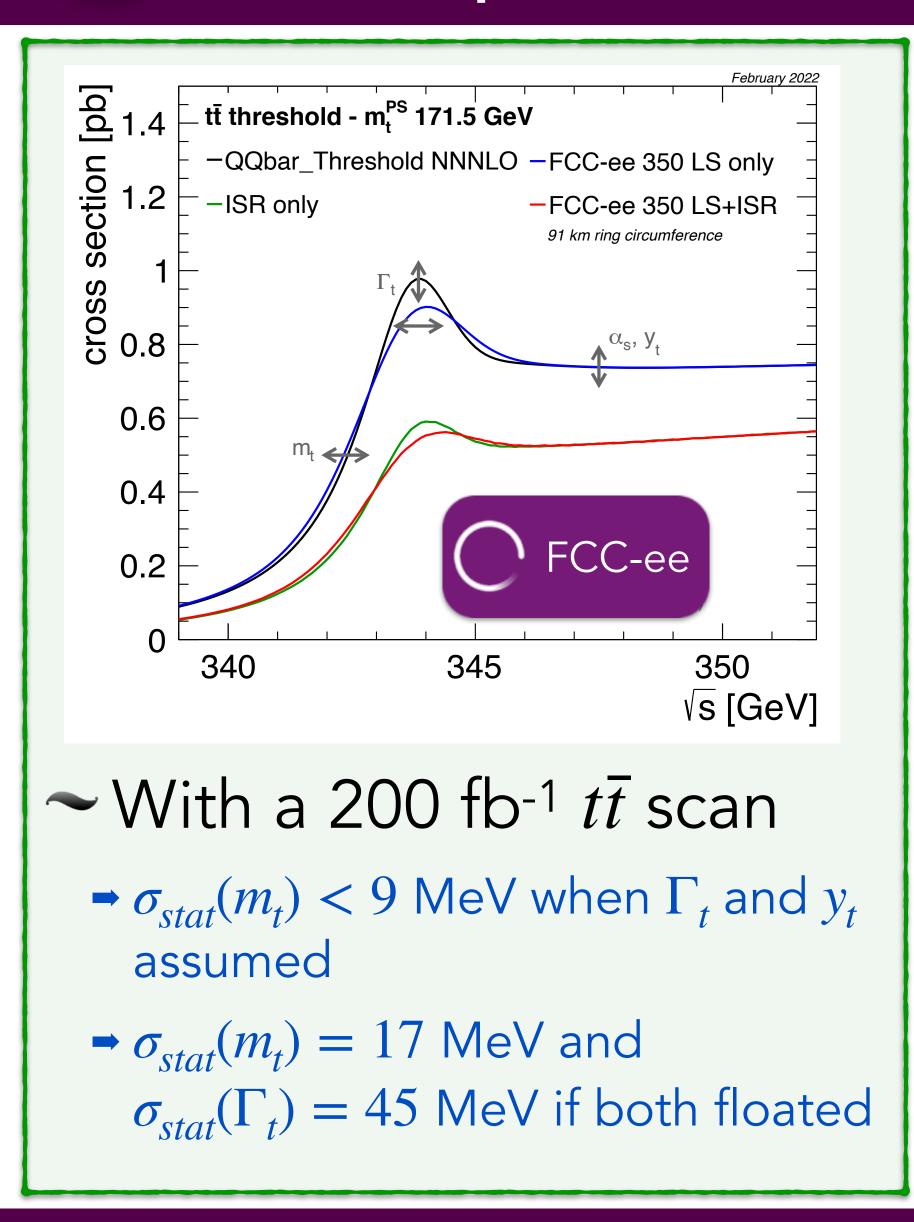
✓ No polarization

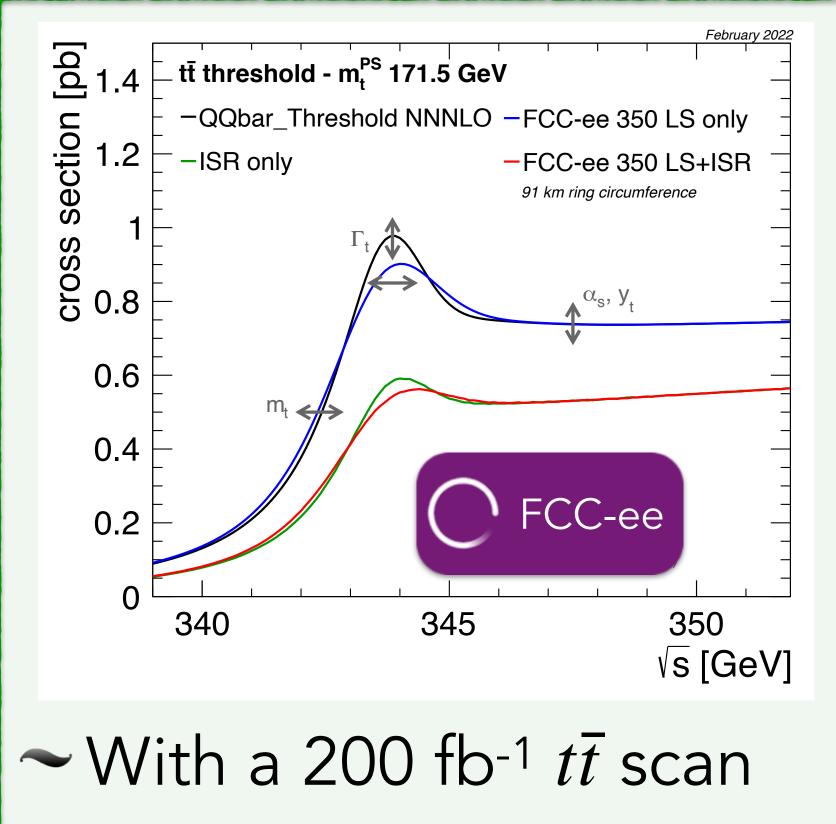
Manuel Franco Sevilla

✓ Run at 350+ GeV \checkmark Measure Z with $e^+e^- \rightarrow Z\gamma$ ✓ Dedicated Z and WW runs possible with small modifications \checkmark Up to 80%/0% polariz. of e^{-}/e^{+}

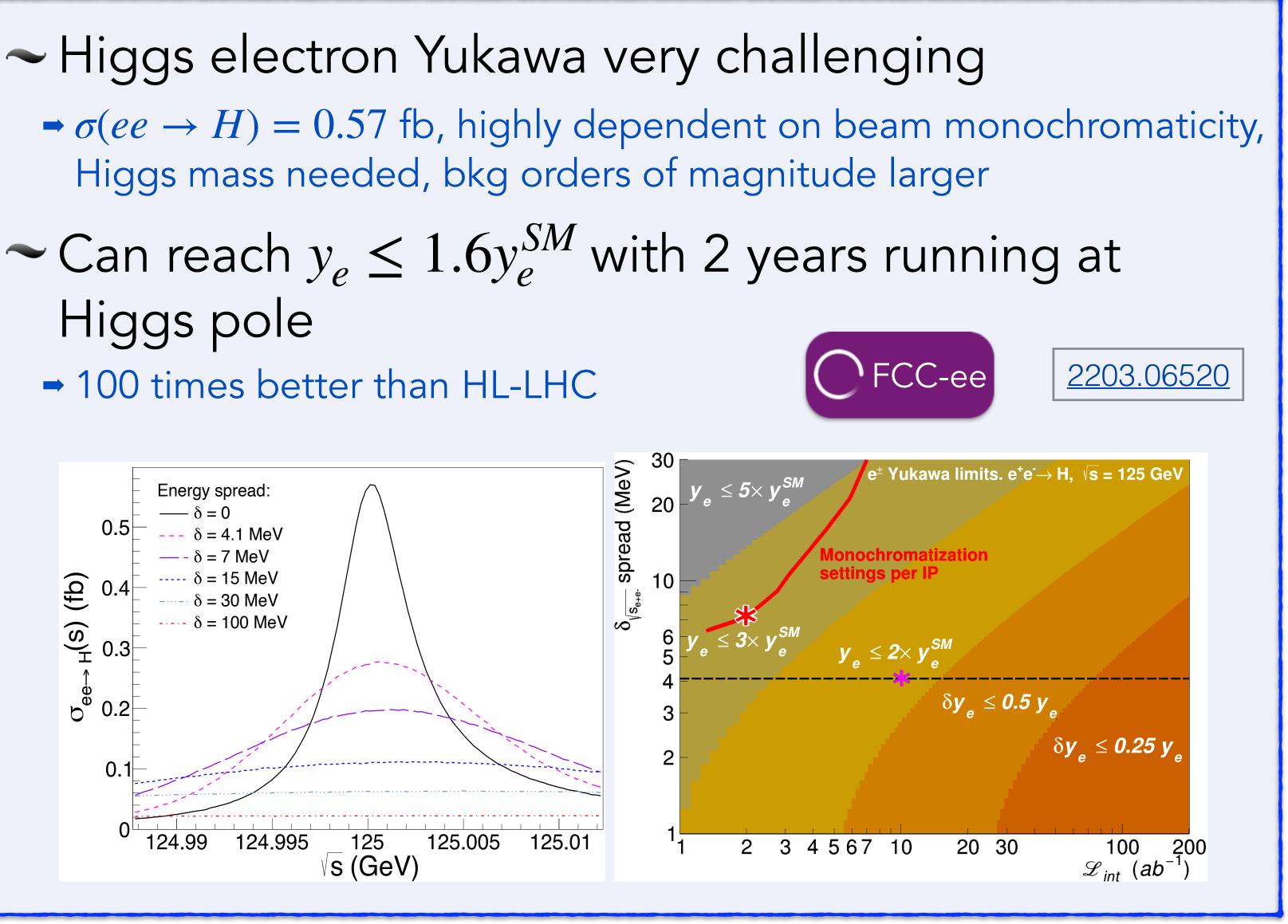
✓ Runs at Z, WW, HZ, tt ✓ No polarization ✓ Similar Z sample (100 ab⁻¹)

Great flavor physics with 10¹²+ Z bosons at circular colliders

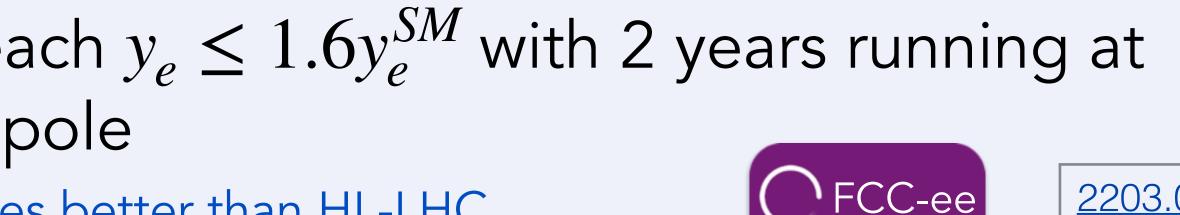



Manuel Franco Sevilla

Unprecedented precision and reach

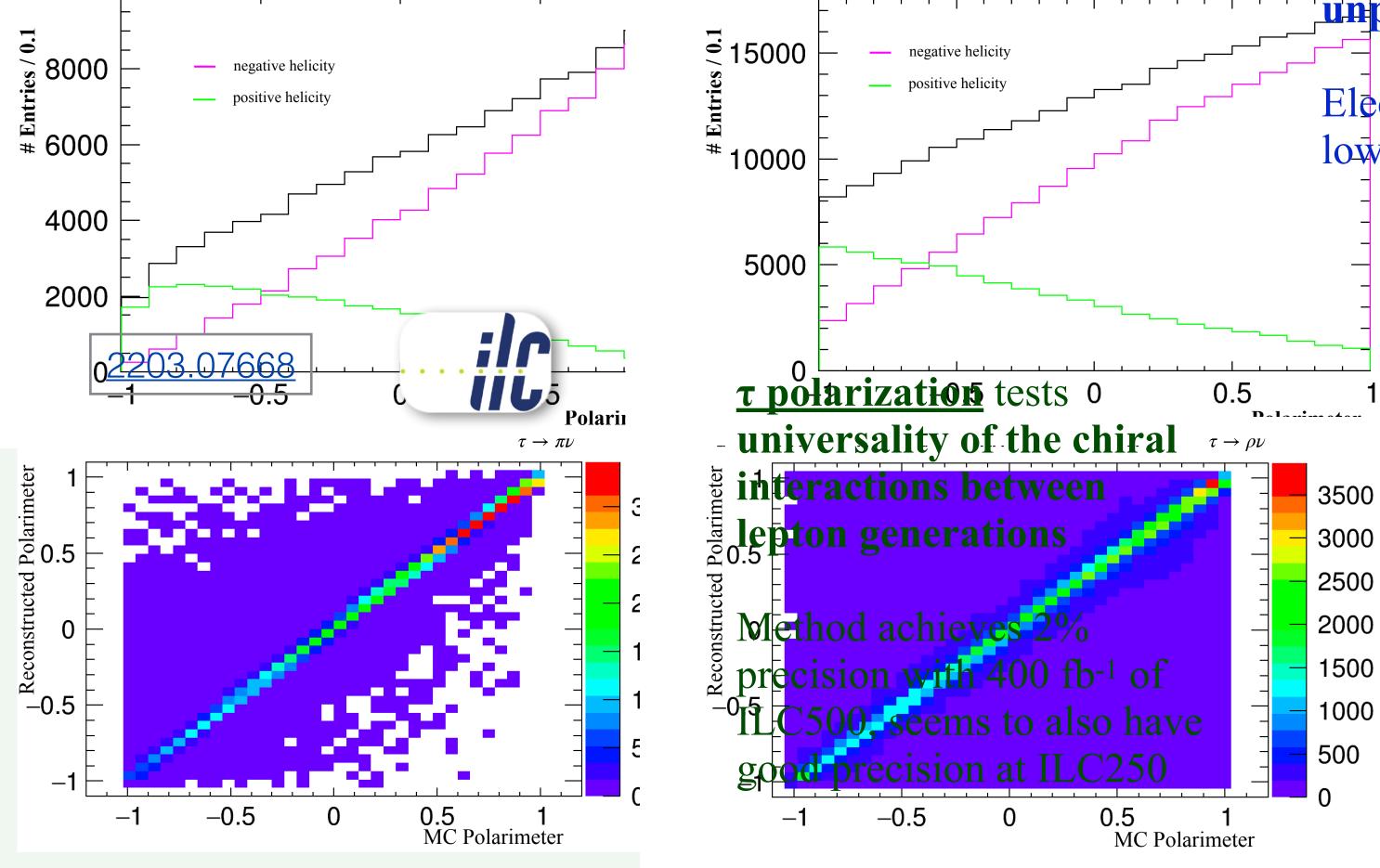


Unprecedented precision and reach



- $\sigma_{stat}(m_t) < 9$ MeV when Γ_t and y_t assumed
- $\rightarrow \sigma_{stat}(m_t) = 17 \text{ MeV and}$ $\sigma_{stat}(\Gamma_t) = 45$ MeV if both floated

Manuel Franco Sevilla

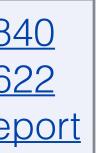


Polarization can play an important role

~ Beam polarization allows for

- I avaraging of venetion domandance on polarization

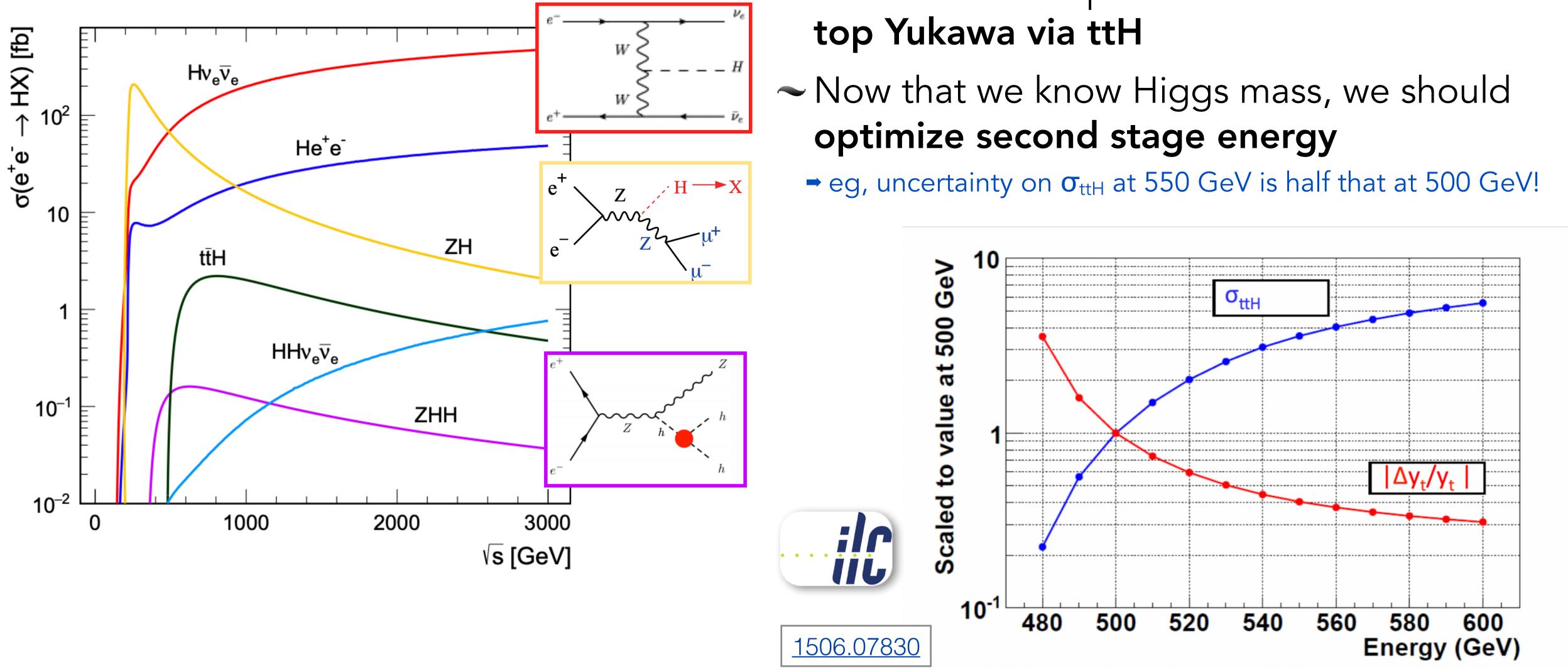
Manuel Franco Sevilla


When analyzing **Higgs couplings with SMEFT**, **2** ab⁻¹ of polarized beams yield similar precision as 5 ab⁻¹ of **unpolarized** beams

Electron polarization is key, positron's low impact

<u>1801.028</u>
2203.076
EF01/02 re

	2/ab-250	+4/ab-500	5/ab-250	+ 1.5/ab-350
ing	pol.	pol.	unpol.	unpol
	0.50	0.35	0.41	0.34
V	0.50	0.35	0.42	0.35
	0.99	0.59	0.72	0.62
	1.1	0.75	0.81	0.71
gg	1.6	0.96	1.1	0.96
cc	1.8	1.2	1.2	1.1
$\gamma\gamma$	1.1	1.0	1.0	1.0
γZ	9.1	6.6	9.5	8.1
$\mu\mu$	4.0	3.8	3.8	3.7
tt	-	6.3	-	-
HH	-	27	-	-
ot	2.3	1.6	1.6	1.4
nv	0.36	0.32	0.34	0.30
ther	1.6	1.2	1.1	0.94



500+ GeV gives access to top Yukawa

Manuel Franco Sevilla

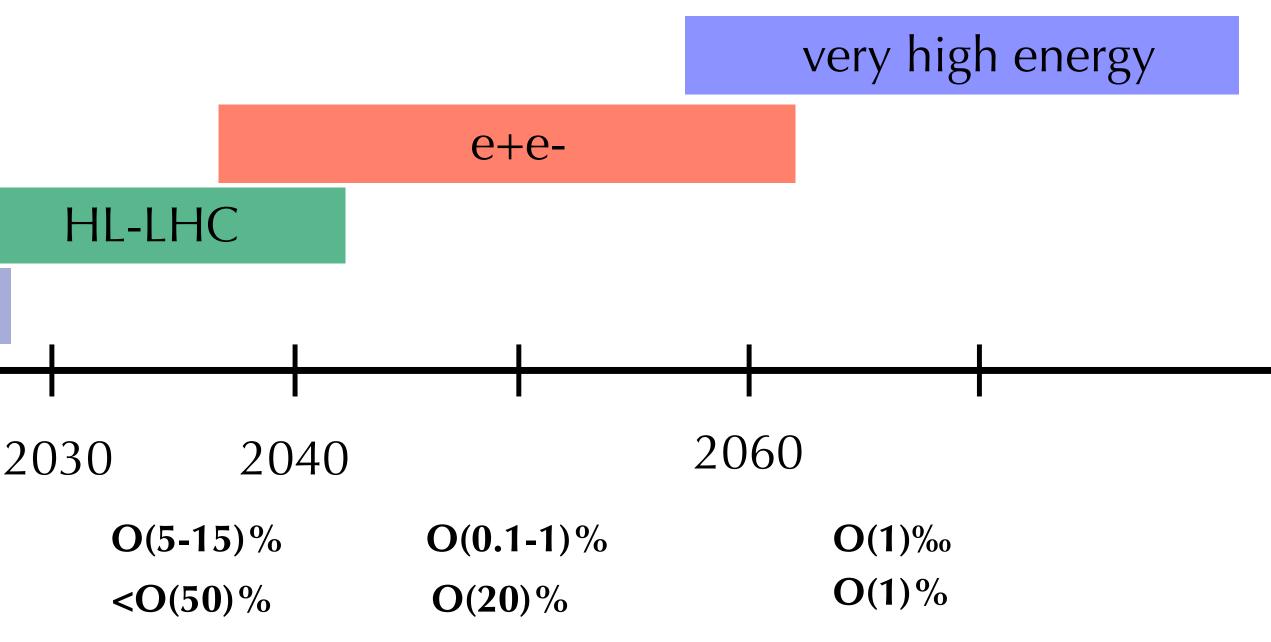
Snowmass RPF Spring meeting: **Report from the Energy Frontier**

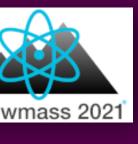
- ~ Linear colliders provide direct access to

High energy machines also help precision

|--|

Collider	Type	\sqrt{S}	$\mathcal{L}_{ ext{int}}$	
			$ ab^{-1} $	
HE-LHC	pp	27 TeV	15	
				-
FCC-hh	pp	100 TeV	30	
			1	-
LHeC	ep	1.3 TeV		
FCC-eh	ep	3.5 TeV	2	
High energy muon-collider	$\mu\mu$	3 TeV	1	
		$10 \mathrm{TeV}$	10	
		$30 \mathrm{TeV}$	10	


Caterina Vernieri EF01/02 report


H couplings to: H self-coupling to

Manuel Franco Sevilla

LHC

"Discovery" machines can also achieve great precision, as the LHC has shown Critical for multiboson production such as HH, WW, WWW, or ZZZ

Observing HH is key to measure Higgs potential Very sensitive to BSM physics

collider	single-H	HH	combined
HL-LHC	100-200%	50%	50%
CEPC ₂₄₀	49%	_	49%
ILC ₂₅₀	49%	—	49%
ILC ₅₀₀	38%	27%	22%
ILC ₁₀₀₀	36%	10%	10%
CLIC ₃₈₀	50%	—	50%
CLIC_{1500}	49%	36%	29%
CLIC ₃₀₀₀	49%	9%	9%
FCC-ee	33%	—	33%
FCC-ee (4 IPs)	24%	—	24%
HE-LHC	-	15%	15%
FCC-hh	_	5%	5%

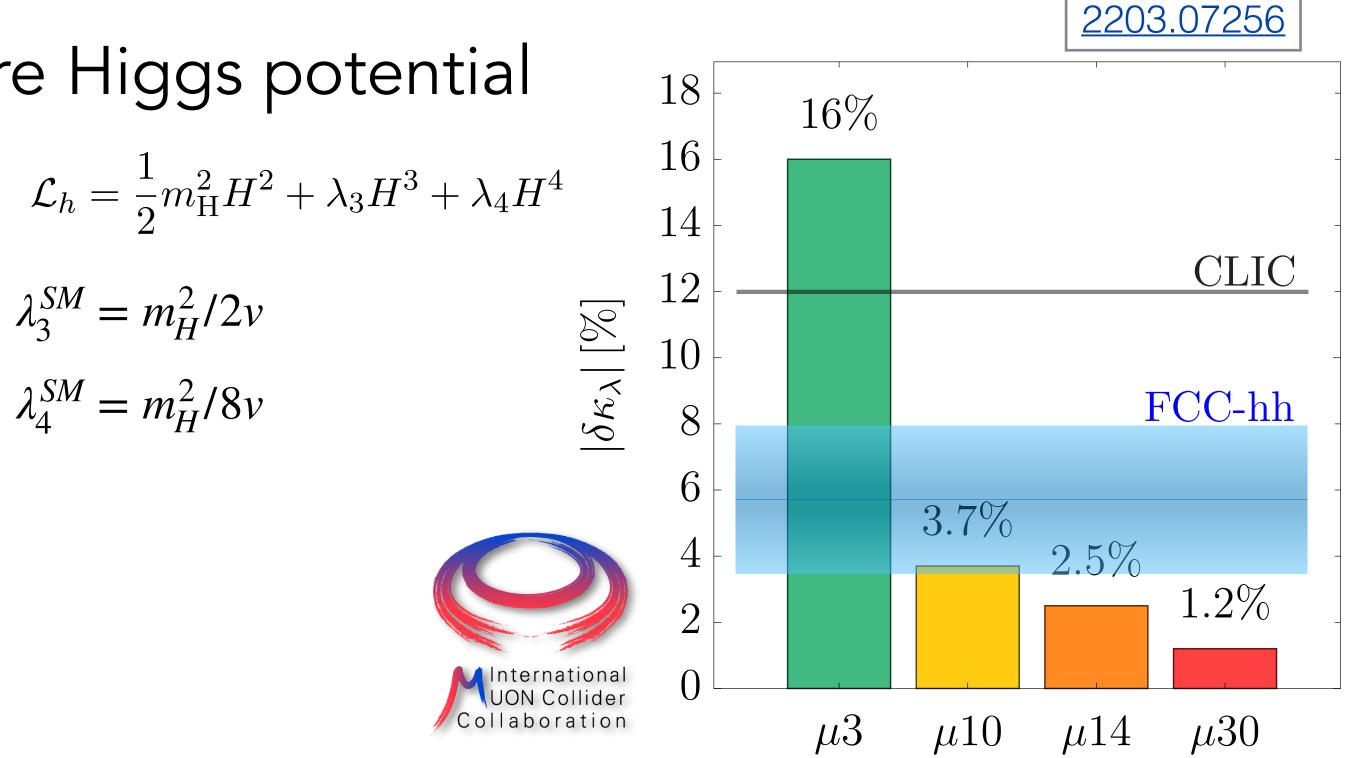
1910.00012

Manuel Franco Sevilla

Higgs self-coupling

- $\mathcal{L}_h = \frac{1}{2}m_{\rm H}^2 H^2 + \lambda_3 H^3 + \lambda_4 H^4$
- $\lambda_3^{SM} = m_H^2 / 2v$
- $\lambda_4^{SM} = m_H^2 / 8v$

Observing HH is key to measure Higgs potential Very sensitive to BSM physics


collider	single-H	HH	combined
HL-LHC	100-200%	50%	50%
CEPC ₂₄₀	49%	_	49%
ILC ₂₅₀	49%	—	49%
ILC ₅₀₀	38%	27%	22%
ILC ₁₀₀₀	36%	10%	10%
CLIC ₃₈₀	50%	—	50%
CLIC_{1500}	49%	36%	29%
CLIC ₃₀₀₀	49%	9%	9%
FCC-ee	33%	—	33%
FCC-ee (4 IPs)	24%	—	24%
HE-LHC	-	15%	15%
FCC-hh	_	5%	5%

<u>1910.00012</u>

Manuel Franco Sevilla

Higgs self-coupling

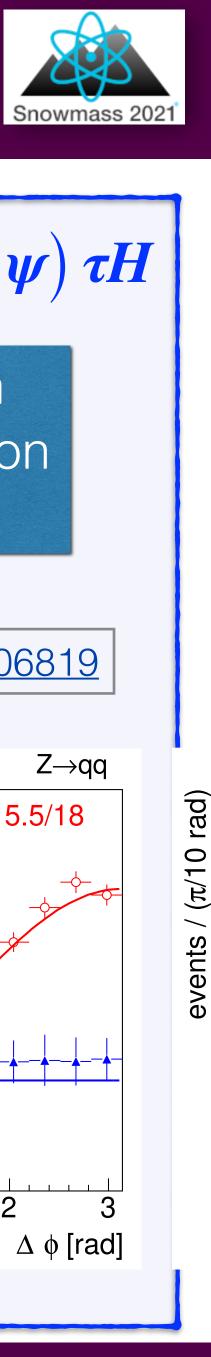
Higher energy hadron or muon colliders are needed to measure self-coupling λ with good precision

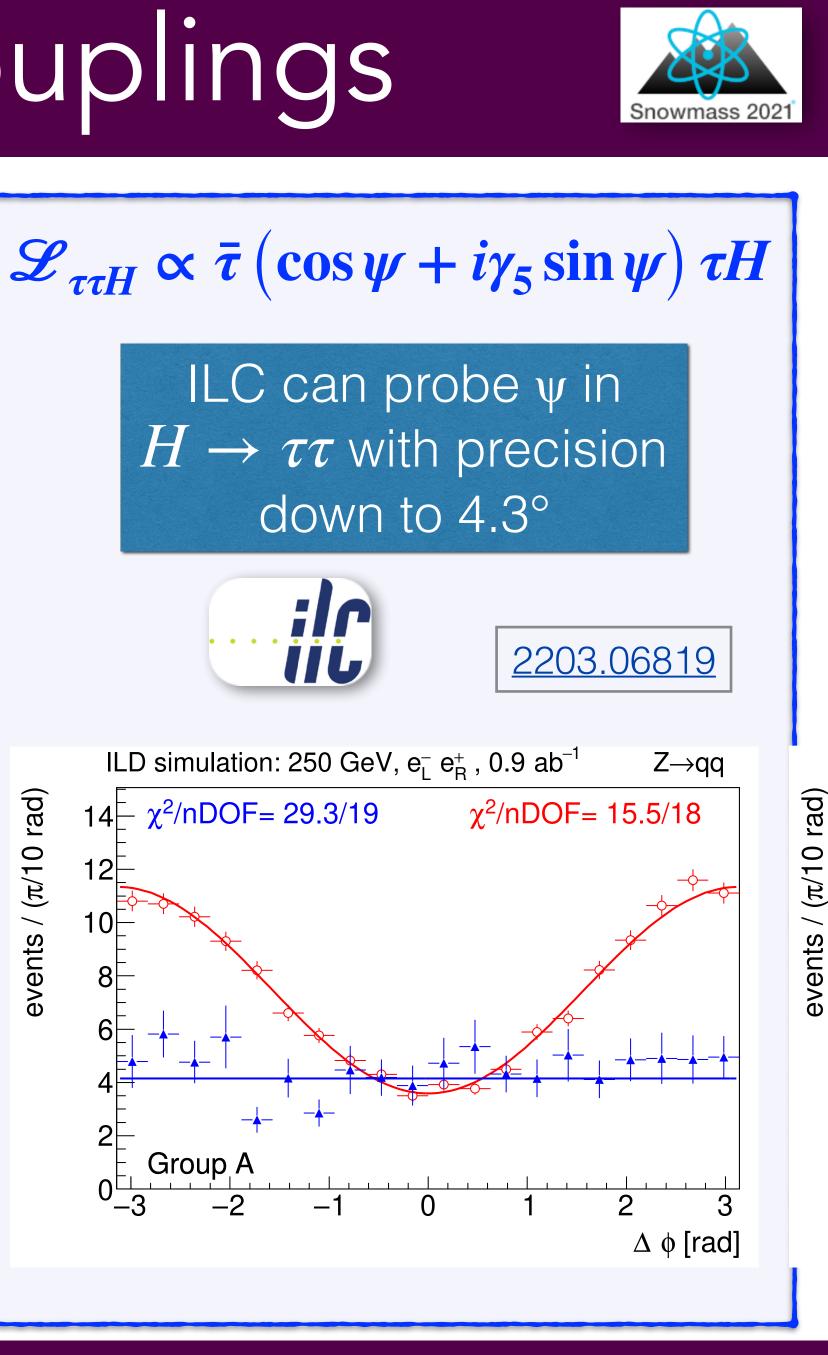
~ In the SM, the Higgs is CP even ($\alpha^{SM} = 0^\circ$)

$\mathscr{L}_{ttH} \propto \overline{t} \left(\cos \alpha + i \gamma_5 \sin \alpha \right) tH$

FCC-hh and muC can probe α in ttH with precision down to 3°

Bounds on α at 95% CL ($\kappa_t = 1$)	Channel	Collider	Luminosity
$ \alpha \lesssim 36^{\circ} \ [1]$	dileptonic $t\bar{t}(h \to b\bar{b})$	HL-LHC	3 ab^{-1}
$ \alpha \lesssim 25^{\circ} \ [2]$	$t\bar{t}(h \rightarrow \gamma \gamma)$ combination	HL-LHC	3 ab^{-1}
$ \alpha \lesssim 3^{\circ} \ [1]$	dileptonic $t\bar{t}(h \to b\bar{b})$	$100 { m TeV} { m FCC}$	30 ab^{-1}
$ lpha \lesssim 9^\circ$ [3]	semileptonic $t\bar{t}(h \to b\bar{b})$	$10 \text{ TeV } \mu^+\mu^-$	10 ab^{-1}
$ \alpha \lesssim 3^{\circ}$ [3]	semileptonic $t\bar{t}(h \to b\bar{b})$	$30 \text{ TeV } \mu^+\mu^-$	10 ab^{-1}



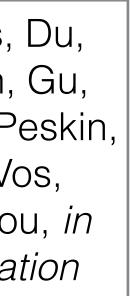


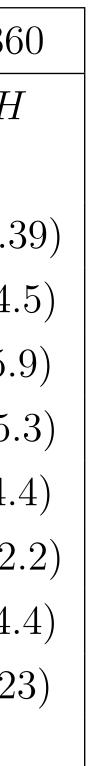
Manuel Franco Sevilla

CP-structure of Higgs couplings

Snowmass RPF Spring meeting: Report from the Energy Frontier

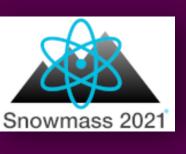
Global fits

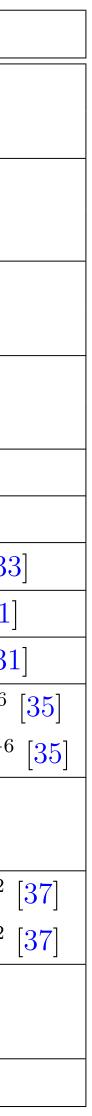

- Study various collider scenarios with SMEFT global fits
 - Place generic constraints on BSM physics, unify the assumptions about systematic errors
 - Model-independent if new physics scales are significantly higher than the EW scale
 - Combine large sets of experimental data in a systematically improvable OFT approach


Quantity	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380		$1.5 \text{ ab}^{-1} \text{ F}$	CC-ee365	$1.0 \text{ ab}^{-1} \text{ C}$	CEPC360
$\Delta \alpha(m_Z)^{-1} (\times 10^3)$	17.8^{*}		3.8(1.2)	17.8^{*}						
$\Delta m_W \; ({ m MeV})$	0.5(2.4)		0.25 (0.3)	0.35~(0.3)		Prod.	ZH	$\nu \nu H$	ZH	u u H
$\Delta m_Z \; ({\rm MeV})$	0.7 (0.2)	0.2	0.004(0.1)	0.005~(0.1)	2.1*	σ	0.9(0.84)	_	1.4(1.02)	_
$\Delta m_H \ ({ m MeV})$	14		2.5(2)	5.9	78					,
$\Delta \Gamma_W (MeV)$	2		1.2 (0.3)	1.8(0.9)		$\sigma \times BR_{bb}$	0.5(0.71)	0.9(1.14)	0.90(0.86)	1.1(1.3)
	1.5(0.2)		0.004(0.025)	0.005(0.025)	2.3*	$\sigma \times BR_{cc}$	6.5(5.0)	10(11.9)	8.8(6.1)	16(14.5)
$\Delta A_e \; (imes 10^5)$	14 (4.5)	1.5(8)	0.7~(2)	$1.5 \;(negl.?)$	64					X
$\Delta A_{\mu} (\times 10^5)$	82 (4.5)	3 (8)	2.3(2.2)	3.0(1.8)	400	$\sigma \times BR_{gg}$	3.5(3.8)	4.5(4.8)	3.4(4.7)	4.5(5.9)
$\Delta A_{\tau} \ (\times 10^5)$	86 (4.5)	3(8)	0.5 (20)	1.2 (6.9)	570	$\sigma \times BR_{ZZ}$	12(11.4)	10(12.5)	20(13.9)	21(15.3)
$\Delta A_b \; (\times 10^5)$	53 (35)	9 (50)	2.4(21)	3(21)	380					X
$\Delta A_c \; (\times 10^5)$	140(25)	20 (37)	20 (15)	6 (30)	200	$\sigma \times BR_{WW}$	2.6(2.55)	(3.6)	2.8(3.12)	4.4(4.4)
$\int \overline{\Delta \sigma_{\text{had}}^0} (pb)$			0.035(4)	0.05(2)	$\begin{bmatrix} -37^{*} \end{bmatrix}$	$\sigma \times BR_{\tau\tau}$	1.8(1.83)	8(10)	2.1(2.24)	4.2(12.2)
$\delta R_e \; (\times 10^3)$	0.5(1.0)	0.2 (0.5)	0.004 (0.3)	0.003~(0.2)	2.7					X
$\delta R_{\mu} \; (\times 10^3)$	0.5(1.0)	0.2 (0.2)	$0.003 \ (0.05)$	0.003~(0.1)	2.7	$\sigma \times BR_{\gamma\gamma}$	18(17.7)	22(28.1)	11(21.7)	16(34.4)
$\delta R_{ au} \; (imes 10^3)$	0.6(1.0)	0.2(0.4)	0.003 (0.1)	0.003~(0.1)	6	$\sigma \times BR_{\mu\mu}$	40(40)	(100)	41(48)	57(123)
$\delta R_b \; (\times 10^3)$	0.4(1.0)	$0.04 \ (0.7)$	$0.0014 \ (< 0.3)$	0.005~(0.2)	1.8					01(120
$\delta R_c(\times 10^3)$	0.6(5.0)	0.2(3.0)	0.015(1.5)	0.02(1)	5.6	$\sigma \times BR_{inv.}$	0.60(0.42)	_	(0.49)	_

Manuel Franco Sevilla

de Blas, Du, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, in preparation

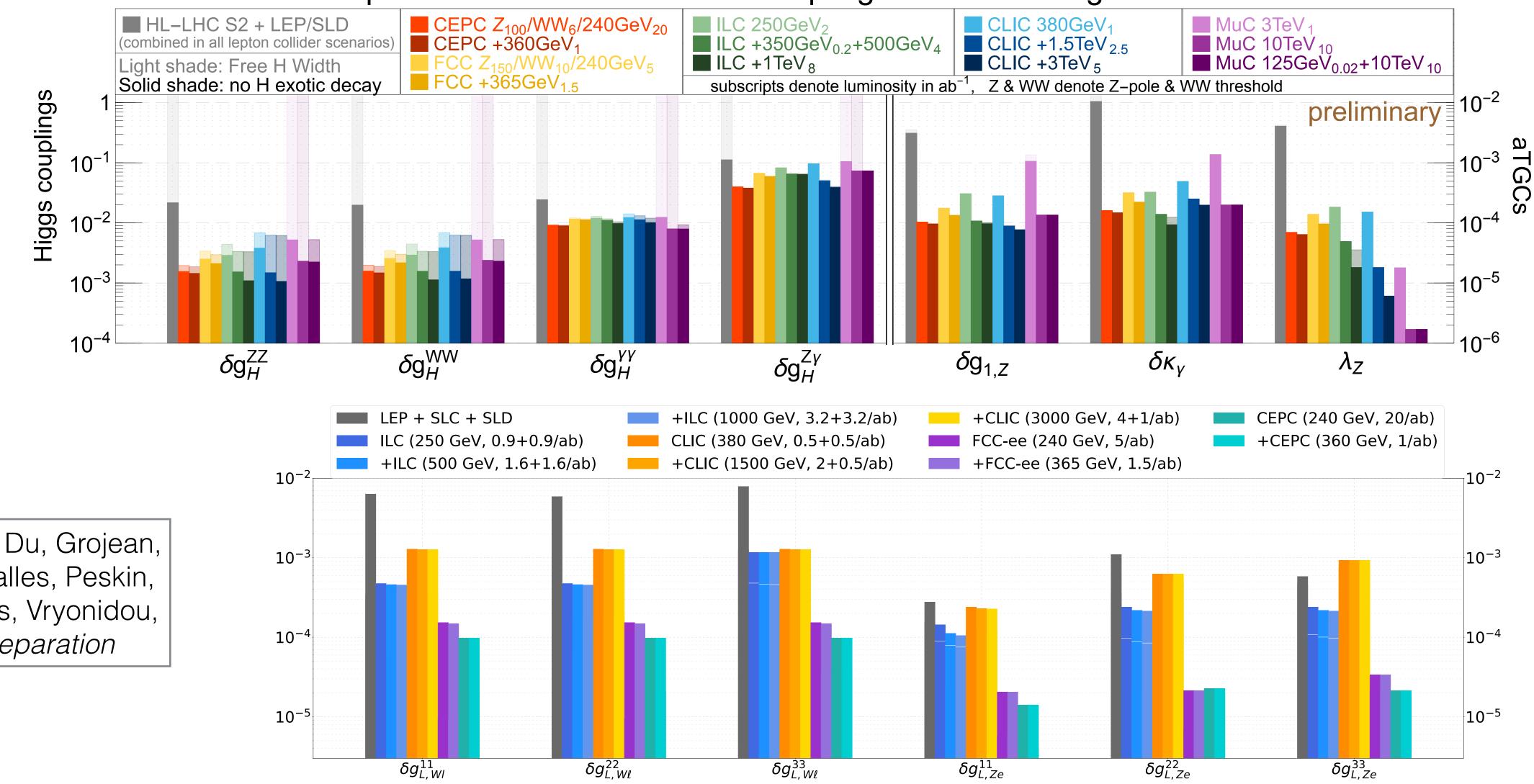




Also some low-energy observables

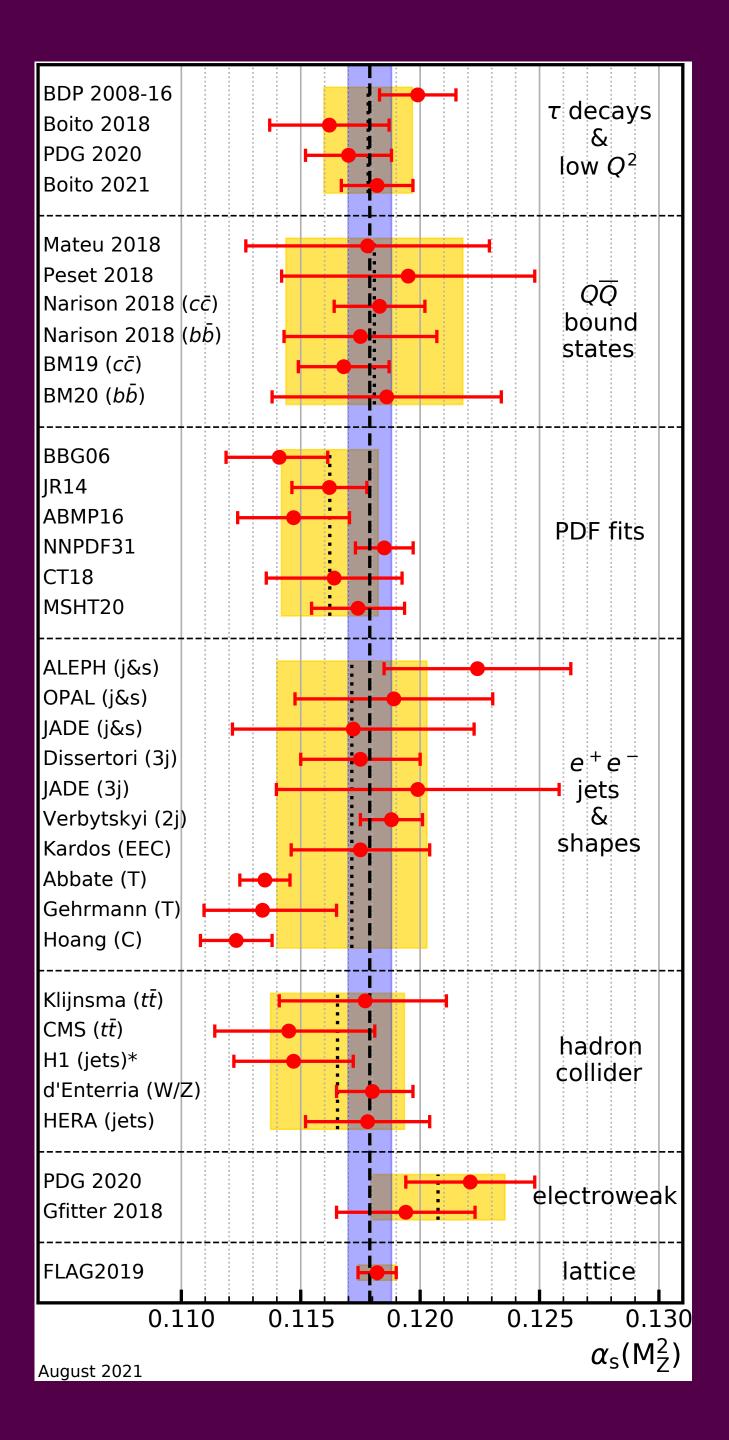
	Process	Observable	Experimental value	Ref.	SM prediction
	(-)	$g_{LV}^{ u_{\mu}e}$	-0.035 ± 0.017		-0.0396 [25]
	$\stackrel{(-)}{\nu}_{\mu} - e^{-}$ scattering	$g_{LA}^{ u_{\mu}e}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.5064 [25]	
	au decay	$\frac{G_{\tau e}^2}{G_F^2}$	1.0029 ± 0.0046	PDG2014 [26]	1
	7 decay	$\frac{G_{\tau\mu}^2}{G_F^2}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
		$R_{ u_{\mu}}$	0.3093 ± 0.0031	CHARM (r - 0.456) [27]	0.3156 [27]
e Blas, Du, Grojean,		$R_{\overline{\nu}_{\mu}}$	0.390 ± 0.014	(111111111111111111111111111111111111	0.370 [27]
	Neutrino scattering	$R_{ u_{\mu}}$	0.3072 ± 0.0033	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.3091 [28]
		$R_{\overline{ u}_{\mu}}$	0.382 ± 0.016		0.380 [28]
		κ	0.5820 ± 0.0041	CHARM-II [24] PDG2014 [26] PDG2014 [26] CHARM $(r = 0.456)$ [27] CHARM $(r = 0.456)$ [27] CDHS $(r = 0.393)$ [28] CDHS $(r = 0.393)$ [28] CCFR [29] CCFR [29] CHARM [30] SLAC-E158 [32] PDG2016 [31] PDG2016 [31] QWEAK [34] -6 PVIDS [35] (- 0^{-6} PVIDS [35] (- SAMPLE ($\sqrt{Q^2} = 200$ MeV) [36] SAMPLE ($\sqrt{Q^2} = 125$ MeV) [36] GeV^{-2} SPS ($\lambda = 0.81$) [37] - VENUS [38] VENUS [38]	0.5830 [29]
de Blas Du Groiean		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.33 [31]		
Gu, Miralles, Peskin, Tian, Vos, Vryonidou,		$(s_w^2)^{\mathrm{M} \emptyset \mathrm{ller}}$	0.2397 ± 0.0013	SLAC-E158 [32]	0.2381 ± 0.0006 [33]
		$Q_W^{Cs}(55,78)$	-72.62 ± 0.43	PDG2016 [3 1]	-73.25 ± 0.02 [31]
in preparation		$Q_W^{\mathrm{p}}(1,0)$	0.064 ± 0.012	QWEAK [34]	0.0708 ± 0.0003 [31]
πρισραιατισπ		A_1	$(-91.1 \pm 4.3) \times 10^{-6}$	PVIDS [35]	$(-87.7 \pm 0.7) \times 10^{-6}$
	Parity-violating scattering	A_2	$(-160.8 \pm 7.1) \times 10^{-6}$		$(-158.9 \pm 1.0) \times 10^{-6}$
		$a_{ri}^{eu} - a_{ri}^{ed}$	-0.042 ± 0.057	SAMPLE ($\sqrt{Q^2} = 200 \text{MeV}$) [36]	-0.0360 [31]
			-0.12 ± 0.074	SAMPLE $(\sqrt{Q^2} = 125 \text{MeV}) [36]$	0.0265 [31]
		hana	$-(1.47 \pm 0.42) \times 10^{-4} \mathrm{GeV^{-2}}$	SPS $(\lambda = 0.81)$ [37]	$-1.56 \times 10^{-4} \mathrm{GeV^{-2}}$ [
		V5P5	$-(1.74 \pm 0.81) \times 10^{-4} \mathrm{GeV^{-2}}$	SPS $(\lambda = 0.66)$ [37]	$-1.57 \times 10^{-4} \mathrm{GeV^{-2}}$ [
	au polarization	$\mathcal{P}_{ au}$	0.012 ± 0.058	VENUS [38]	0.028 [38]
		$\mathcal{A}_{\mathcal{P}}$	0.029 ± 0.057		0.021 [38]
	Neutrino trident production	$\frac{\sigma}{\sigma^{\rm SM}}(\nu_{\mu}\gamma^* \to \nu_{\mu}\mu^+\mu^-)$	0.82 ± 0.28	CCFR [39–41]	1

Manuel Franco Sevilla



Some preliminary results

precision reach on effective couplings from SMEFT global fit



de Blas, Du, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, in preparation

Snowmass RPF Spring meeting: **Report from the Energy Frontier**

Manuel Franco Sevilla

EF05+EF06+EF07: OCD & Heavy ions

Focus areas in QCD report

- ~ What is the **ultimate precision for** α_s
- ~ Which precision QCD calculations are needed to support measurements
- What are the requirements for MC development
- ~ Guidance/support/developments in jet substructure
- ~ New developments in (groomed) event shapes and energy-energy correlators
- ~ Physics opportunities at forward physics experiments
- ~ Fragmentation functions & modeling of hadronization transition from low to high energies

~ Opportunities for precision tests of QCD at the HL-LHC, EIC, FCC

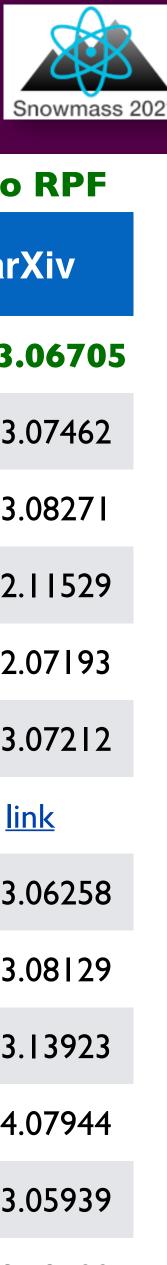
Focus areas in QCD report

- ~ What is the **ultimate precision for** α_s
- ~ Which precision QCD calculations are needed to support measurements
- What are the requirements for MC development
- ~ Guidance/support/developments in jet substructure
- ~ New developments in (groomed) event shapes and energy-energy correlators
- ~ Physics opportunities at forward physics experiments
- ~ Fragmentation functions & modeling of hadronization transition from low to high energies

~ Opportunities for precision tests of QCD at the HL-LHC, EIC, FCC

QCD not the driving force for many future experiments, but crucial for understanding them

13 papers submitted to EF05+EF06+EF07

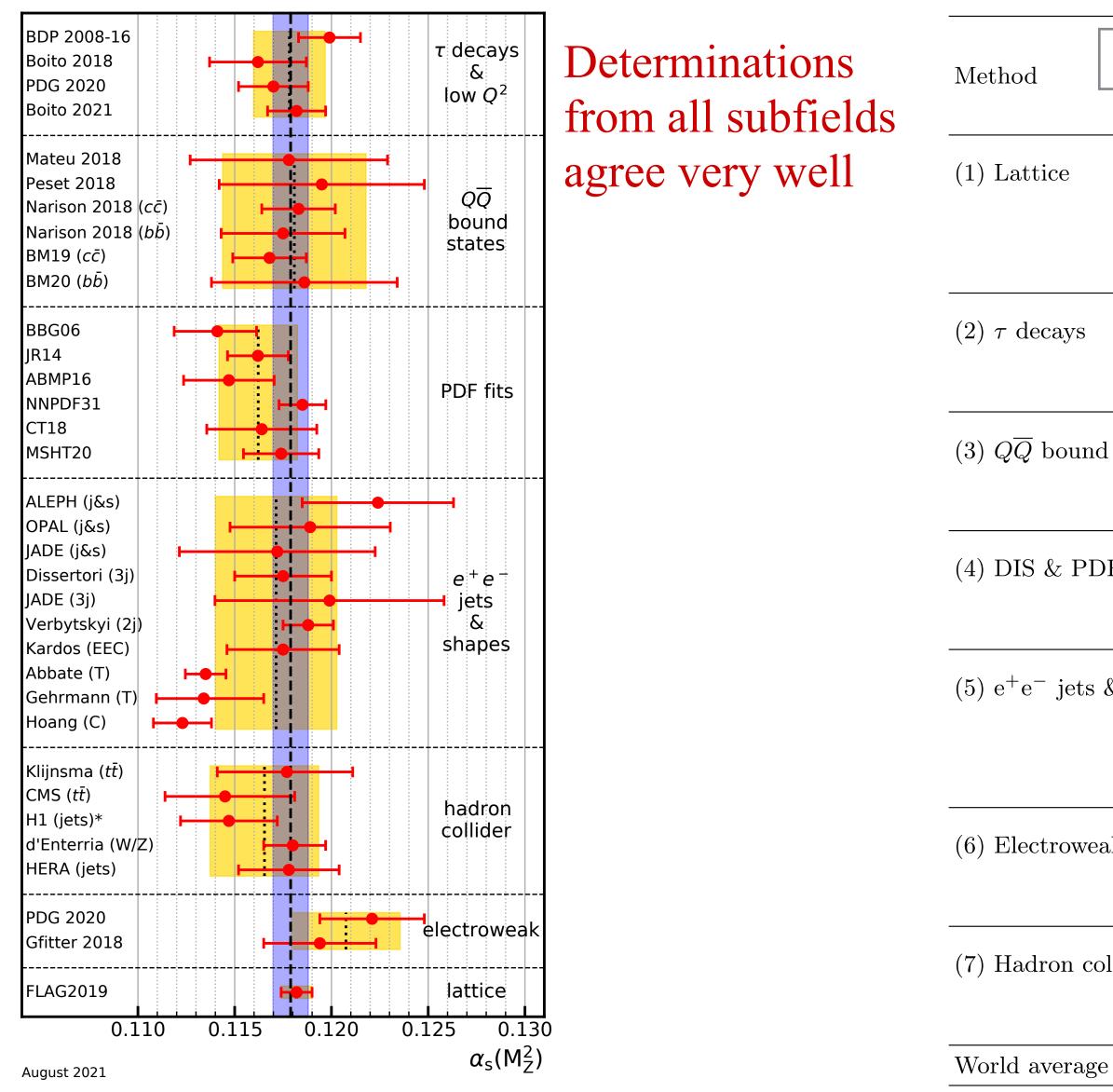

TG

Title

EF07 Heavy Neutral Lepton Searches at the Electron-Ion Collider

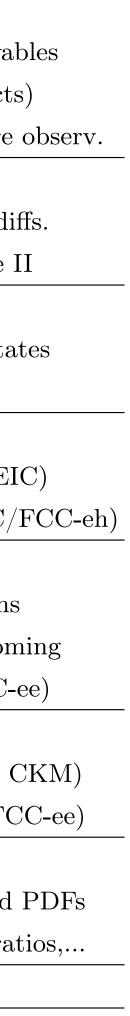
- EF05 Jets and Jet Substructure at Future Colliders
- EF05 The strong coupling constant: State of the art and the decade ahead
- EF06 Some aspects of the impact of the Electron Ion Collider on particle physics at
- EF06 Lattice QCD Calculations of Parton Physics
- EF06 Prompt electron and tau neutrinos and antineutrinos in the forward region at
- EF06 xFitter: An Open Source QCD Analysis Framework
- EF06 The Potential of a TeV-Scale Muon-Ion Collider
- EF06 Forward Physics, BFKL, Saturation Physics and Diffraction
- **EF06** *Proton structure at the precision frontier*
- EF06 Impact of lattice s(x)-sbar(x) data in the CTEQ-TEA global analysis
- EF07 Opportunities for new physics searches with heavy ions at colliders
- EF07 Electron Ion Collider for High Energy Physics

Manuel Franco Sevilla


Green: also submitted to RPF

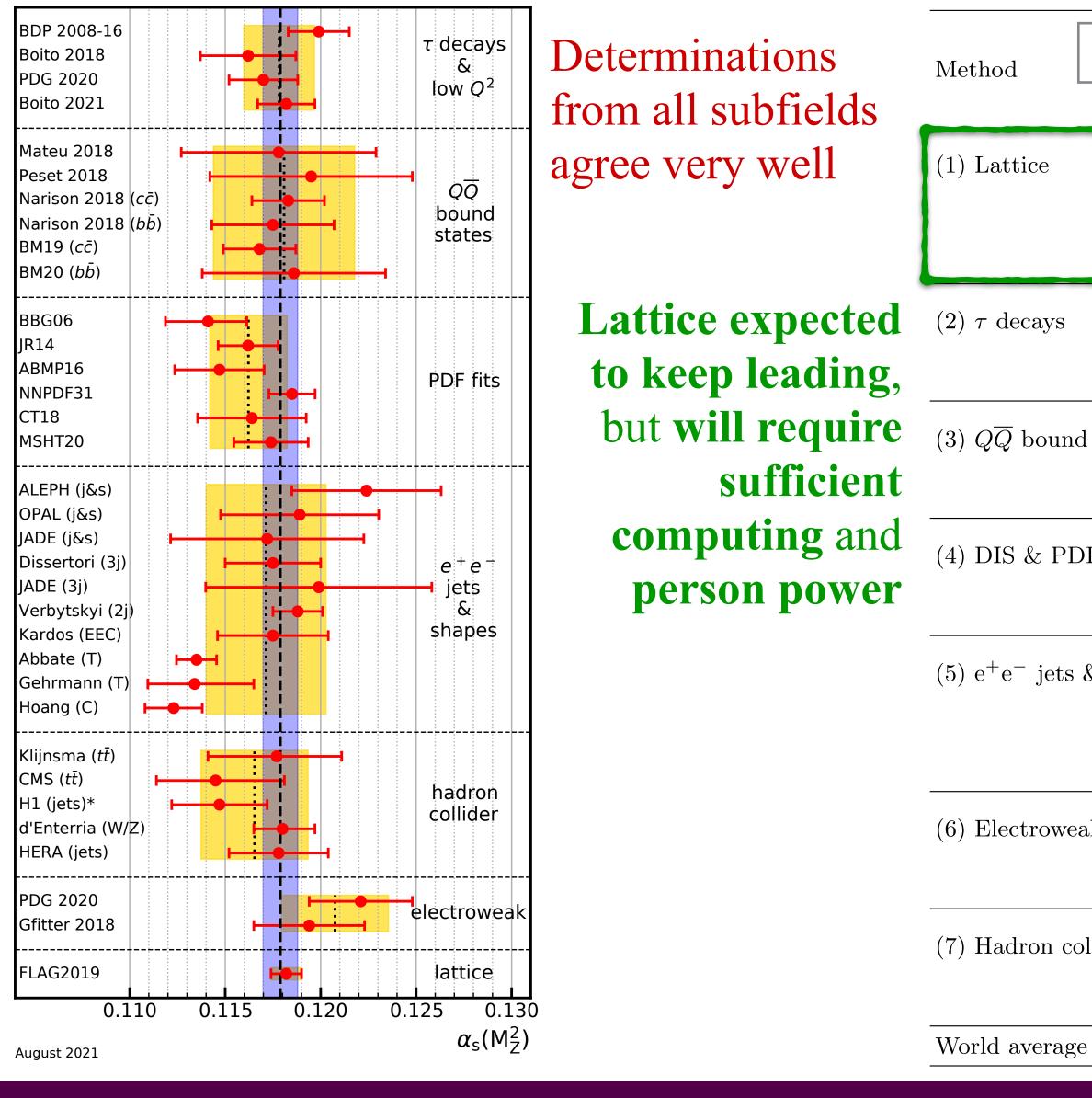
	Authors	arXiv
r	B. Batell, T. Ghosh, K. Xie, et al	2203.06705
	B. Nachman, S. Rappoccio, N. Tran, et al	2203.07462
	D. d'Enterria, S. Kluth, G. Zanderighi, et al	2203.08271
at the Energy Frontier	S.V. Chekanov, S. Magill	2202.11529
	M. Constantinou, L. Del Debbio, X. Ji, et al	2202.07193
t the LHC	W. Bai, M.Vaman Diwan, M.Vittoria Garzelli, et al	2203.07212
	xFitter Developers Team	link
	D. Acosta, E. Barberis, N. Hurley, et al	2203.06258
	M. Hentschinski, C. Royon, M. Alcazar Peredo, et al	2203.08129
	S.Amoroso, A.Apyan, N.Armesto, et al	2203.13923
	T. Hou, H. Lin, M.Yan, et al	2204.07944
	D. d'Enterria, M. Drewes, A. Giammanco, et al	2203.05939
	R.Abdul Khalek, U. D'Alesio, M.Arratia, et al	2203.13199

Determination of α_S



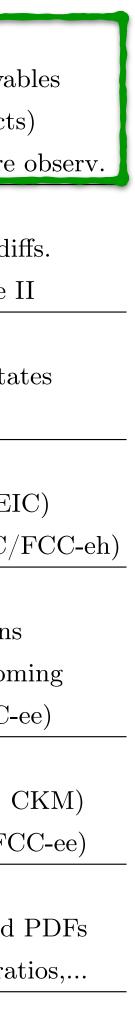
Manuel Franco Sevilla

Snowmass RPF Spring meeting: **Report from the Energy Frontier**



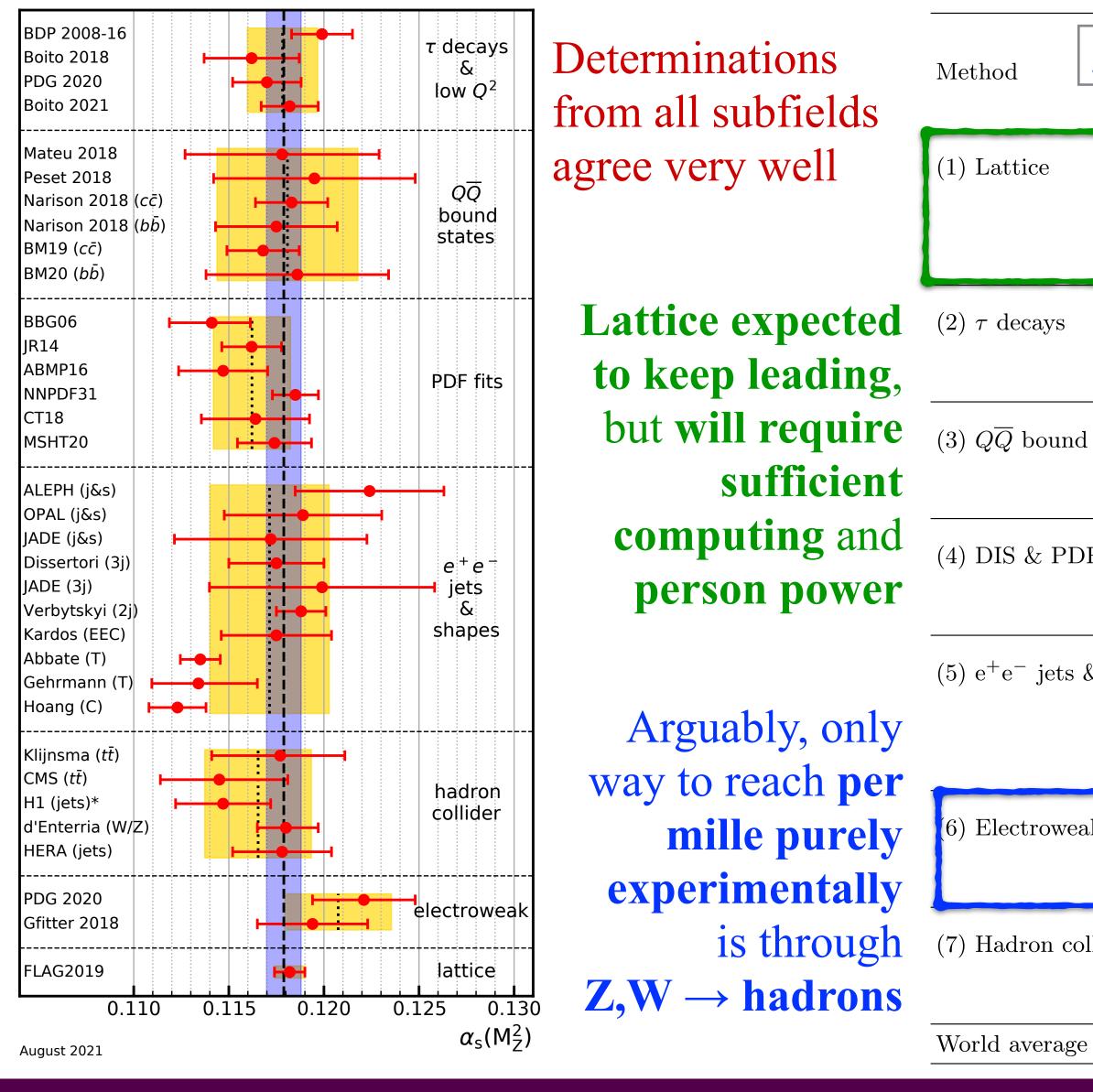
	Relative	e $\alpha_S(m_{\rm Z}^2)$ uncertainty
2203.08	Current	Near (long-term) future
	theory & exp. uncertainties sources	theory & experimental progress
	0.7%	$pprox 0.3\% \ (0.1\%)$
	Finite lattice spacing & stats.	Reduced latt. spacing. Add more observab
	$N^{2,3}LO$ pQCD truncation	Add $N^{3,4}LO$, active charm (QED effects
		Higher renorm. scale via step-scaling to more
	1.6%	< 1.%
	$N^{3}LO$ CIPT vs. FOPT diffs.	Add N^4LO terms. Solve CIPT–FOPT dif
	Limited τ spectral data	Improved τ spectral functions at Belle I
-]	3.3%	pprox 1.5%
d states	$N^{2,3}LO$ pQCD truncation	Add N ^{3,4} LO & more $(c\overline{c})$, $(b\overline{b})$ bound state
	$m_{c,b}$ uncertainties	Combined $m_{c,b} + \alpha_S$ fits
OF fits	1.7%	pprox 1%~(0.2%)
JF IIIS	$N^{2,(3)}LO PDF (SF) fits$	$N^{3}LO$ fits. Add new SF fits: $F_{2}^{p,d}, g_{i}$ (EI
	Span of PDF-based results	Better corr. matrices. More PDF data (LHeC/ $\!\!\!$
le art charac	2.6%	$\approx 1.5\% \; (< 1\%)$
& evt shapes	NNLO+ $N^{(1,2,3)}LL$ truncation	Add $N^{2,3}LO+N^3LL$, power corrections
	Different NP analytical & PS corrs.	Improved NP corrs. via: NNLL PS, groom
	Limited datasets w/ old detectors	New improved data at B factories (FCC-
ak fits	2.3%	(pprox 0.1%)
ak IIUS	$N^{3}LO$ truncation	$\rm N^4LO$, reduced param. uncerts. ($m_{\rm W,Z}, \alpha, C$
	Small LEP+SLD datasets	Add W boson. Tera-Z, Oku-W datasets (FC
olliders	2.4%	pprox 1.5%
JIIIUEIS	NNLO(+NNLL) truncation, PDF uncerts.	$N^{3}LO+NNLL$ (for color-singlets), improved
	Limited data sets $(t\bar{t}, W, Z, e-p \text{ jets})$	Add more datasets: Z $p_{\rm T}$, p-p jets, σ_i/σ_j rat
e	0.8%	pprox 0.4%~(0.1%)

Determination of α_{S}



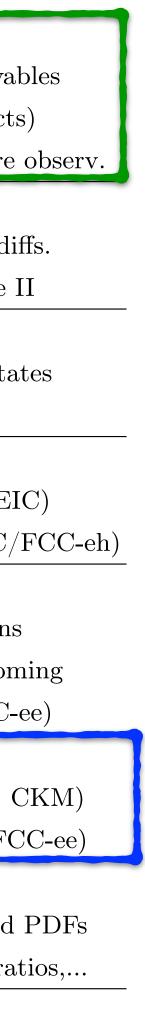
Manuel Franco Sevilla

Snowmass RPF Spring meeting: Report from the Energy Frontier



$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Relative	Relative $\alpha_S(m_Z^2)$ uncertainty					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2203.08	271	· _/					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		theory & exp. uncertainties sources	theory & experimental progress					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.7%	$pprox 0.3\% \; (0.1\%)$					
Higher renorm. scale via step-scaling to more1.6%< 1.%		Finite lattice spacing & stats.	Reduced latt. spacing. Add more observab					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$N^{2,3}LO$ pQCD truncation	Add $N^{3,4}LO$, active charm (QED effects					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Higher renorm. scale via step-scaling to more					
$\frac{\text{Limited τ spectral data}}{\text{M} \text{Spectral functions at Belle}} \\ \frac{3.3\%}{\text{N}^{2.3}\text{LO pQCD truncation}} \\ \frac{3.3\%}{\text{N}^{2.3}\text{LO pQCD truncation}} \\ \frac{3.3\%}{\text{Add N}^{3.4}\text{LO ψ more $(c\bar{c})$, $(b\bar{b}$) bound states}} \\ \frac{m_{c,b} \text{ uncertainties}}{\text{Combined $m_{c,b} + \alpha_{S}$ fits}} \\ \frac{m_{c,b} \text{ uncertainties}}{\text{Combined $m_{c,b} + \alpha_{S}$ fits}} \\ \frac{1.7\%}{\text{N}^{2,(3)}\text{LO PDF}(\text{SF})$ fits} \\ \frac{3.3\%}{\text{N}^{2,(3)}\text{LO PDF}(\text{SF})$ fits} \\ \frac{3.3\%}{\text{Span of PDF-based results}} \\ \frac{2.6\%}{\text{Span of PDF-based results}} \\ \frac{2.6\%}{\text{NNLO} + N^{(1,2,3)}\text{LL truncation}} \\ \frac{3.3\%}{\text{D} \text{fits}} \\ \frac{1.5\%}{\text{C}(<1\%)} \\ \frac{3.3\%}{\text{N} \text{N} \text{LO} + N^{(1,2,3)}\text{LL truncation}} \\ \frac{3.3\%}{\text{D} \text{fits}} \\ \frac{3.3\%}{\text{N} \text{N} \text{LO} + N^{(1,2,3)}\text{LL truncation}} \\ \frac{3.3\%}{\text{D} \text{fits}} \\ \frac{3.3\%}{\text{N} \text{C}(=0.1\%)} \\ \frac{3.3\%}{\text{N} \text{LO} \text{ runcation}} \\ \frac{3.3\%}{\text{LO} \text{ runcatio}} \\ \frac{3.3\%}{\text{LO} runcatio$		1.6%	< 1.%					
d states d sta		$N^{3}LO$ CIPT vs. FOPT diffs.	Add N ⁴ LO terms. Solve CIPT–FOPT dif					
d states $N^{2,3}LO pQCD truncation Mdt N^{3,4}LO \& more (c\bar{c}), (b\bar{b}) bound state m_{c,b} uncertainties Combined m_{c,b} + \alpha_S fits m_{c,b} uncertainties Combined m_{c,b} + \alpha_S fits m_{c,b} + \alpha_S fits N^2 fits N^{2,(3)}LO PDF (SF) fits N^3LO fits. Add new SF fits: F_2^{p,d}, g_i (E Span of PDF-based results Better corr. matrices. More PDF data (LHeC/ \& evt shapes 2.6\% \approx 1.5\% (< 1\%) NNLO+N^{(1,2,3)}LL truncation Different NP analytical & PS corrs. Limited datasets w/ old detectors New improved NP corrs. via: NNLL PS, groor Limited datasets w/ old detectors New improved data at B factories (FCC- Name LEP+SLD datasets Add W boson. Tera-Z, Oku-W datasets (FCO- Small LEP+SLD datasets Add W boson. Tera-Z, Oku-W datasets (FCO- Small LEP+SLD datasets Add W boson. Tera-Z, Oku-W datasets (FCO- Small LEP+SLD datasets Add W boson. Tera-Z, Oku-W datasets (FCO- Small LEP+SLD datasets Add W boson. Tera-Z, Oku-W datasets (FCO- Small LEP+SLD datasets Add W boson. Tera-Z, Oku-W datasets (FCO- Small LEP+SLD datasets Add W boson. Tera-Z, Oku-W datasets (FCO- Small LEP+SLD datasets Add W boson. Tera-Z, Oku-W datasets (FCO- Small LEP+SLD datasets Add W boson. Tera-Z, Oku-W datasets (FCO- Small LEP+SLD datasets (t\bar{t}, W, Z, e-p jets)) Add more datasets: Z p_T, p-p jets, \sigma_i/\sigma_j rates Add more datasets: Z p_T, p-p jets, \sigma_i/\sigma_j rates Add more datasets: Z p_T, p-p jets, \sigma_i/\sigma_j rates N^2 LO + NNLL (for color-singlets), improved Add more datasets: Z p_T, p-p jets, \sigma_i/\sigma_j rates N^2 LO + NNLL (for color-singlets) (for \sigma_j/\sigma_j rates N^2 LO + NNLL (for color-singlets) (for \sigma_j/\sigma_j rates N^2 LO + NNLL (for color-singlets) (for \sigma_j/\sigma_j rates N^2 LO + NNLL (for color-singlets) (for \sigma_j/\sigma_j rates N^2 LO + NNLL (for color-singlets) (for \sigma_j/\sigma_j rates N^2 LO + NNLL (for color-singlets) (for \sigma_j/\sigma_j rates N^2 LO + NNLL (for color-singlets) (for \sigma_j/\sigma_j rates N^2 LO + NNLL (for color-singlets) (for \sigma_j/\sigma_j rates N^2 LO + NNLL (for color-singlets) (for \sigma_j/\sigma_j$		Limited τ spectral data	Improved $ au$ spectral functions at Belle I					
$ \begin{array}{c} \mathrm{N}^{2.3}\mathrm{LO}\ \mathrm{pQCD}\ \mathrm{truncation} & \mathrm{Add}\ \mathrm{N}^{3.4}\mathrm{LO}\ \&\ \mathrm{more}\ (c\bar{c}),\ (bb)\ \mathrm{bound}\ \mathrm{sta} \\ \hline m_{c,b}\ \mathrm{uncertainties} & \mathrm{Combined}\ m_{c,b} + \alpha_{S}\ \mathrm{fits} \\ \hline m_{c,b}\ \mathrm{uncertainties} & \mathrm{Combined}\ m_{c,b} + \alpha_{S}\ \mathrm{fits} \\ \hline \mathrm{N}^{2,(3)}\mathrm{LO}\ \mathrm{PDF}\ (\mathrm{SF})\ \mathrm{fits} & \mathrm{N}^{3}\mathrm{LO}\ \mathrm{fits}.\ \mathrm{Add}\ \mathrm{new}\ \mathrm{SF}\ \mathrm{fits}:\ F_{2}^{p,d},\ g_{i}\ (\mathrm{E}) \\ \hline \mathrm{Span\ of\ PDF-based\ results} & \mathrm{Better\ corr.\ matrices.\ More\ PDF\ data\ (\mathrm{LHeC}/) \\ \hline \&\ \mathrm{evt\ shapes} & \frac{2.6\% & \approx 1.5\%\ (<1\%)}{\mathrm{NNLO} + \mathrm{N}^{(1,2,3)}\mathrm{LL\ truncation}} & \mathrm{Add\ N}^{2.3}\mathrm{LO} + \mathrm{N}^{3}\mathrm{LL},\ \mathrm{power\ corrections} \\ \hline \mathrm{Different\ NP\ analytical\ \&\ PS\ corrs. \\ \mathrm{Limited\ datasets\ w/\ old\ detectors} & \mathrm{New\ improved\ Add\ N}^{2.3}\mathrm{LO} + \mathrm{N}^{3}\mathrm{LL},\ \mathrm{power\ corrections} \\ \hline \mathrm{Improved\ NP\ corrs.\ via:\ NNLL\ PS,\ groor \\ \mathrm{Limited\ datasets\ w/\ old\ detectors} & \mathrm{New\ improved\ data\ at\ B\ factories\ (FCC-\ mw,z,\ \alpha, 0)} \\ \hline \mathrm{Add\ W\ boson.\ Tera-Z,\ Oku-W\ datasets\ (FCC-\ mw,z,\ \alpha, 0)} \\ \hline \mathrm{Small\ LEP+SLD\ datasets} & \mathrm{Add\ W\ boson.\ Tera-Z,\ Oku-W\ datasets\ (FC-\ mw,z)\ mucerts.\ (mw,z,\ \alpha, 0)} \\ \hline \mathrm{Add\ W\ boson.\ Tera-Z,\ Oku-W\ datasets\ (FCC-\ mw,z)\ mucerts.\ (mw,z,\ \alpha, 0)} \\ \hline \mathrm{Add\ W\ boson.\ Tera-Z,\ Oku-W\ datasets\ (FC-\ mw,z)\ mucerts.\ (mw,z,\ \alpha, 0)} \\ \hline Add\ W\ boson.\ Tera-Z,\ Oku-W\ datasets\ (FC-\ mw,z)\ mucerts.\ (mw,z)\ mucerts.\ (mw,z)\ mucerts.\ (mw,z)\ mucerts.\ (mw,z)\ mucerts.\ (mw,z)\ mucerts\ (mw,z)\ mucert$	datataa	3.3%	pprox 1.5%					
DF fits $\begin{array}{c} 1.7\% & \approx 1\% \ (0.2\%) \\ N^{2,(3)}LO \ PDF \ (SF) \ fits & N^{3}LO \ fits. \ Add \ new \ SF \ fits: \ F_2^{p,d}, \ g_i \ (E. Span of \ PDF-based \ results & Better \ corr. \ matrices. \ More \ PDF \ data \ (LHeC/\\ & evt \ shapes & 2.6\% & \approx 1.5\% \ (< 1\%) \\ & NNLO+N^{(1,2,3)}LL \ truncation & Add \ N^{2,3}LO+N^{3}LL, \ power \ corrections \\ & Different \ NP \ analytical \ \& \ PS \ corrs. \ Improved \ NP \ corrs. \ via: \ NNLL \ PS, \ groor \\ & Limited \ data sets \ w/ \ old \ detectors & New \ improved \ data \ at \ B \ factories \ (FCC-\\ & N^{3}LO \ truncation & N^{4}LO, \ reduced \ param. \ uncerts. \ (m_{W,Z}, \alpha, 0) \\ & Small \ LEP+SLD \ datasets & Add \ W \ boson. \ Tera-Z, \ Oku-W \ datasets \ (FOC-\\ & Small \ LEP+SLD \ datasets & Add \ W \ boson. \ Tera-Z, \ Oku-W \ datasets \ (FOC-\\ & NNLO(+NNLL) \ truncation, \ PDF \ uncerts. \ N^{3}LO+NNLL \ (for \ color-singlets), \ improved \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ Add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ add \ add \ more \ datasets: \ Z \ p_T, \ p-p \ jets, \ \sigma_i/\sigma_j \ rates \ add \$	d states	$N^{2,3}LO$ pQCD truncation	Add N ^{3,4} LO & more $(c\overline{c})$, $(b\overline{b})$ bound stat					
DF fits $N^{2,(3)}LO$ PDF (SF) fits $N^{3}LO$ fits. Add new SF fits: $F_{2}^{p,d}$, g_{i} (E.Span of PDF-based resultsBetter corr. matrices. More PDF data (LHeC/& evt shapes 2.6% $\approx 1.5\%$ (< 1%)		$m_{c,b}$ uncertainties	Combined $m_{c,b} + \alpha_S$ fits					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1.7%	pprox 1%~(0.2%)					
$ \begin{array}{c} \begin{array}{c} 2.6\% \\ \& \mbox{ evt shapes} \end{array} & \begin{array}{c} 2.6\% \\ NNLO+N^{(1,2,3)}LL \mbox{ truncation} \\ Different NP \mbox{ analytical }\& PS \mbox{ corrs.} \\ Limited \mbox{ datasets } w/ \mbox{ old detectors} \end{array} & \begin{array}{c} Add \ N^{2,3}LO+N^{3}LL, \mbox{ power corrections} \\ Improved \ NP \ corrs. \ via: \ NNLL \ PS, \ groon \\ New \ improved \ data \ at \ B \ factories \ (FCC-1\%) \\ New \ improved \ data \ at \ B \ factories \ (FCC-1\%) \\ \hline wak \ fits \\ \begin{array}{c} 2.3\% \\ N^{3}LO \ truncation \\ Small \ LEP+SLD \ datasets \\ \end{array} & \begin{array}{c} N^{4}LO, \ reduced \ param. \ uncerts. \ (m_{W,Z}, \alpha, 0) \\ M^{4}LO, \ reduced \ param. \ uncerts. \ (m_{W,Z}, \alpha, 0) \\ \hline where \ NNLO(+NNLL) \ truncation, \ PDF \ uncerts. \\ \hline NNLO(+NNLL) \ truncation, \ PDF \ uncerts. \\ \hline N^{3}LO+NNLL \ (for \ color-singlets), \ improved \\ \hline Add \ more \ datasets: \ Z \ p_{T}, \ p-p \ jets, \ \sigma_{i}/\sigma_{j} \ rates \ rat$	Jr IIIS	$N^{2,(3)}LO PDF (SF) fits$	N ³ LO fits. Add new SF fits: $F_2^{p,d}$, g_i (EI					
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \operatorname{wevt shapes} \\ \operatorname{NNLO+N^{(1,2,3)}LL \ truncation} \\ Different \ NP \ analytical \ \& \ PS \ corrs. \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Span of PDF-based results	Better corr. matrices. More PDF data (LHeC/					
$\frac{1}{10000000000000000000000000000000000$	le art abana	2.6%	$\approx 1.5\% \ (< 1\%)$					
Limited datasets w/ old detectorsNew improved data at B factories (FCC- ($\approx 0.1\%$)eak fits 2.3% ($\approx 0.1\%$)N ³ LO truncationN ⁴ LO, reduced param. uncerts. ($m_{W,Z}, \alpha, \sigma$)Small LEP+SLD datasetsAdd W boson. Tera-Z, Oku-W datasets (FColliders 2.4% $\approx 1.5\%$ NNLO(+NNLL) truncation, PDF uncerts.N ³ LO+NNLL (for color-singlets), improved Add more datasets: Z p_{T} , p-p jets, σ_i/σ_j rate	& evt snapes	NNLO+N ^{$(1,2,3)$} LL truncation	Add $N^{2,3}LO+N^3LL$, power corrections					
eak fits 2.3% ($\approx 0.1\%$)N ³ LO truncationN ⁴ LO, reduced param. uncerts. ($m_{W,Z}, \alpha, 0$)Small LEP+SLD datasetsAdd W boson. Tera-Z, Oku-W datasets (FO)olliders 2.4% NNLO(+NNLL) truncation, PDF uncerts.N ³ LO+NNLL (for color-singlets), improvedLimited data sets ($t\bar{t}, W, Z, e-p$ jets)Add more datasets: Z p_T , p-p jets, σ_i/σ_j rate		Different NP analytical & PS corrs.	Improved NP corrs. via: NNLL PS, groom					
eak fitsN ³ LO truncationN ⁴ LO, reduced param. uncerts. $(m_{W,Z}, \alpha, \sigma)$ Small LEP+SLD datasetsAdd W boson. Tera-Z, Oku-W datasets (FOolliders 2.4% NNLO(+NNLL) truncation, PDF uncerts.N ³ LO+NNLL (for color-singlets), improvedLimited data sets ($t\bar{t}$, W, Z, e-p jets)Add more datasets: Z p_T , p-p jets, σ_i/σ_j rate		Limited datasets w/ old detectors	New improved data at B factories (FCC-e					
$ \begin{array}{c} \mathrm{N}^{3}\mathrm{LO} \ \mathrm{truncation} & \mathrm{N}^{4}\mathrm{LO}, \ \mathrm{reduced} \ \mathrm{param.} \ \mathrm{uncerts.} \ (m_{\mathrm{W},\mathrm{Z}}, \alpha, \alpha) \\ \mathrm{Small} \ \mathrm{LEP} + \mathrm{SLD} \ \mathrm{datasets} & \mathrm{Add} \ \mathrm{W} \ \mathrm{boson.} \ \mathrm{Tera-Z}, \ \mathrm{Oku-W} \ \mathrm{datasets} \ (\mathrm{FO}) \\ \mathrm{olliders} & & & & & \\ \hline 2.4\% & & & & & \\ \mathrm{NNLO}(+\mathrm{NNLL}) \ \mathrm{truncation}, \ \mathrm{PDF} \ \mathrm{uncerts.} & \ \mathrm{N}^{3}\mathrm{LO} + \mathrm{NNLL} \ (\mathrm{for} \ \mathrm{color-singlets}), \ \mathrm{improved} \\ \mathrm{Limited} \ \mathrm{data} \ \mathrm{sets} \ (t\bar{t}, \mathrm{W}, \mathrm{Z}, \mathrm{e-p} \ \mathrm{jets}) & \ \mathrm{Add} \ \mathrm{more} \ \mathrm{datasets:} \ \mathrm{Z} \ p_{\mathrm{T}}, \ \mathrm{p-p} \ \mathrm{jets}, \ \sigma_{i}/\sigma_{j} \ \mathrm{rad} \\ \end{array} $	oolz fite	2.3%	(pprox 0.1%)					
olliders $\begin{array}{c} 2.4\% \\ \approx 1.5\% \\ \text{NNLO}(+\text{NNLL}) \text{ truncation, PDF uncerts.} \\ \text{Limited data sets } (t\bar{t}, \text{W}, \text{Z}, \text{e-p jets}) \\ \text{Limited data sets } (t\bar{t}, \text{W}, \text{Z}, \text{e-p jets}) \\ \end{array}$	ak 1105	$N^{3}LO$ truncation	N ⁴ LO, reduced param. uncerts. ($m_{\rm W,Z}, \alpha, C$					
olliders $NNLO(+NNLL)$ truncation, PDF uncerts. $N^{3}LO+NNLL$ (for color-singlets), improved Limited data sets ($t\bar{t}$, W, Z, e-p jets) Add more datasets: Z p_{T} , p-p jets, σ_{i}/σ_{j} ra		Small LEP+SLD datasets	Add W boson. Tera-Z, Oku-W datasets (FC					
NNLO(+NNLL) truncation, PDF uncerts.N ³ LO+NNLL (for color-singlets), improvedLimited data sets ($t\bar{t}$, W, Z, e-p jets)Add more datasets: Z $p_{\rm T}$, p-p jets, σ_i/σ_j rate	ollidors	2.4%	pprox 1.5%					
	UIIUEIS	NNLO(+NNLL) truncation, PDF uncerts.	$N^{3}LO+NNLL$ (for color-singlets), improved					
$\approx 0.4\%$ (0.1%)		Limited data sets $(t\bar{t}, W, Z, e-p jets)$	Add more datasets: Z $p_{\rm T}$, p-p jets, σ_i/σ_j rat					
	je	0.8%	$pprox 0.4\% \; (0.1\%)$					

Determination of α_{S}



Manuel Franco Sevilla

Snowmass RPF Spring meeting: Report from the Energy Frontier

0000.00	Relative	e $\alpha_S(m_Z^2)$ uncertainty
2203.08	<u>Z71</u> Current	Near (long-term) future
	theory & exp. uncertainties sources	theory & experimental progress
	0.7%	$pprox 0.3\% \; (0.1\%)$
	Finite lattice spacing & stats.	Reduced latt. spacing. Add more observal
	$N^{2,3}LO$ pQCD truncation	Add $N^{3,4}LO$, active charm (QED effects
		Higher renorm. scale via step-scaling to more
	1.6%	< 1.%
	$N^{3}LO$ CIPT vs. FOPT diffs.	Add N ⁴ LO terms. Solve CIPT–FOPT dif
	Limited τ spectral data	Improved τ spectral functions at Belle I
1	3.3%	pprox 1.5%
d states	$N^{2,3}LO pQCD truncation$	Add N ^{3,4} LO & more $(c\overline{c})$, $(b\overline{b})$ bound state
	$m_{c,b}$ uncertainties	Combined $m_{c,b} + \alpha_S$ fits
	1.7%	pprox 1%~(0.2%)
OF fits	$N^{2,(3)}LO PDF (SF) fits$	N ³ LO fits. Add new SF fits: $F_2^{p,d}$, g_i (EI
	Span of PDF-based results	Better corr. matrices. More PDF data (LHeC/
0 1	2.6%	$\approx 1.5\% \ (< 1\%)$
& evt shapes	NNLO+N ^{$(1,2,3)$} LL truncation	Add $N^{2,3}LO+N^3LL$, power corrections
	Different NP analytical & PS corrs.	Improved NP corrs. via: NNLL PS, groom
	Limited datasets w/ old detectors	New improved data at B factories (FCC-
1 64	2.3%	(pprox 0.1%)
eak fits	$N^{3}LO$ truncation	N^4LO , reduced param. uncerts. $(m_{W,Z}, \alpha, C)$
	Small LEP+SLD datasets	Add W boson. Tera-Z, Oku-W datasets (FC
11. 1.	2.4%	pprox 1.5%
olliders	NNLO(+NNLL) truncation, PDF uncerts.	$N^{3}LO+NNLL$ (for color-singlets), improved
	Limited data sets $(t\bar{t}, W, Z, e-p \text{ jets})$	Add more datasets: Z $p_{\rm T}$, p-p jets, σ_i/σ_j rat
je	0.8%	$pprox 0.4\% \ (0.1\%)$

Торіс	Status, 2013	Status, 20
Achieved accuracy of PDFs	N2LO for evolution, DIS and vector boson produciton	N2LO for all l processes
PDFs with NLO EW contributions	MSTW'04 QED, NNPDF2.3 QED	LuXQED and several group massive boso
PDFs with resummations	Small x (in progress)	Small-x and t implemented
Available LHC processes to determine nucleon PDFs	W/Z , single-incl. jet, high- $p_T Z$, $t\bar{t}$, $W + c$ production at 7 and 8 TeV	+ <i>tī</i> , single-to Drell Yan pair
Near-future experiments to probe PDFs	LHC Run-2 DIS: LHeC	LHC Run-3 DIS: EIC, LH
Benchmarking of PDFs for the LHC	PDF4LHC'2015 recommendation in preparation	PDF4LHC'21
Precision analysis of specialized PDFs		Nuclear, mes dependent Pl

NEW TASKS in the HL-LHC ERA:

Obtain complete N2LO and N3LO predictions for PDF- sensitive processes	Improve models for correlated systematic errors	Find ways to con without relying or
Develop and benchmark fast N2LO interfaces	Estimate N2LO theory uncertainties	New methods to ensembles, estim deliver PDFs for a

PDFs outlook

022

key processes; N3LO for some

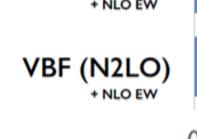
d other photon PDFs from ips; PDFs with leptons and sons

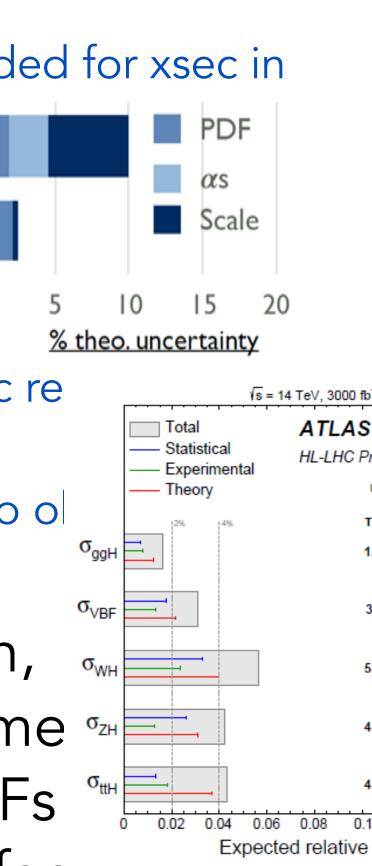
threshold resummations d in several PDF sets

top, dijet, $\gamma/W/Z$ +jet, low-Q airs, ... at 7, 8, 13 TeV

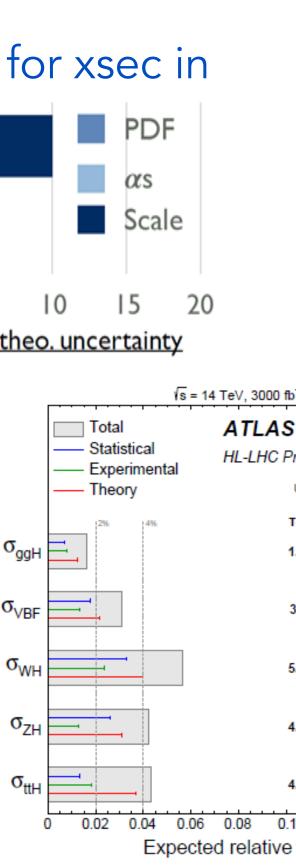
HeC, ...

1 recommendation issued


son, transverse-momentum PDFs


nstrain large-x PDFs on nuclear targets

combine PDF mate PDF uncertainties, deliver PDFs for applications

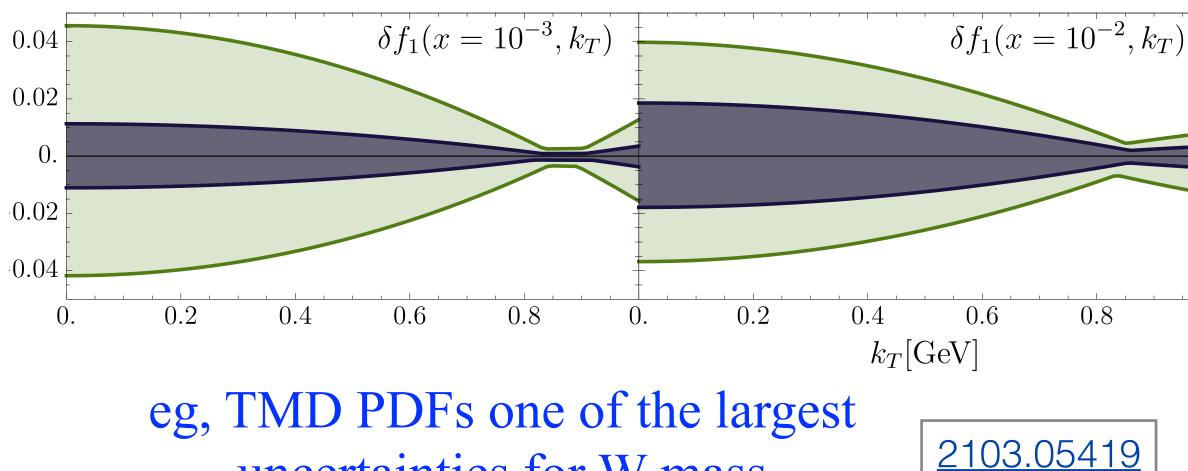

2203.13923

- ∼ Great progress since 2013
 - Similar will be needed for xsec in HL-LHC ggF (N3LO)

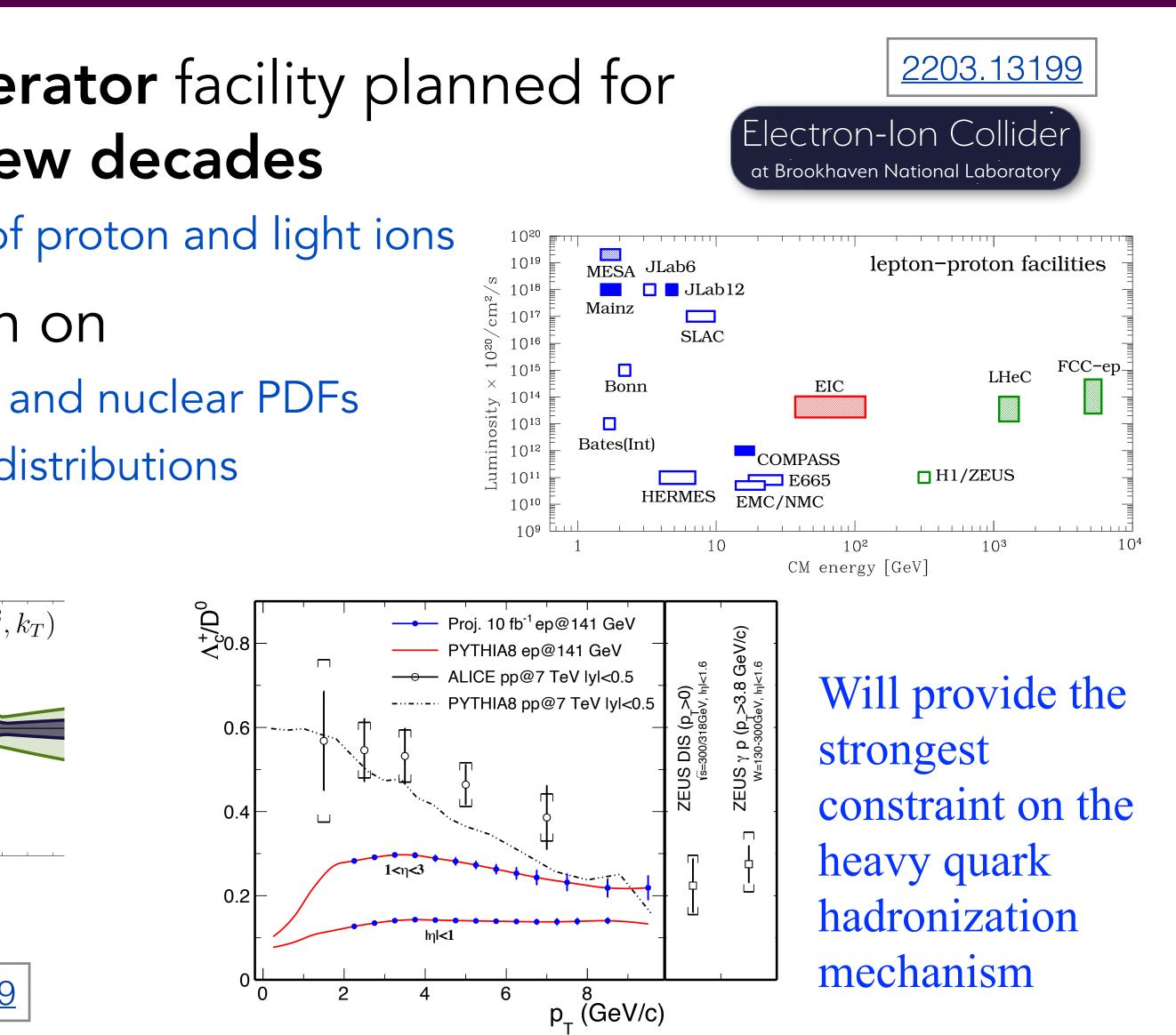
- → Also new kinematic re low-x
- Feasible strategy to ol N3LO PDFs

~ Nuclear, meson, transverse-mome ^oZH dependent PDFs of 0.02 0.04 0.06 0.08 0.1 EIC and other facilities

Forward Physics Facility



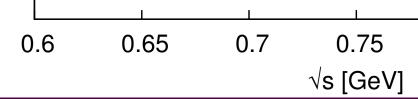
Electron-Ion Collider (EIC)


- ~ The only new large-scale accelerator facility planned for construction in US in the next few decades
 - Polarized electrons with polarized beams of proton and light ions
- ∼ Will provide detailed information on
 - Nonperturbative distributions like nucleon and nuclear PDFs
 - Transverse-momentum dependent (TMD) distributions
 - Heavy flavor baryon production

uncertainties for W mass

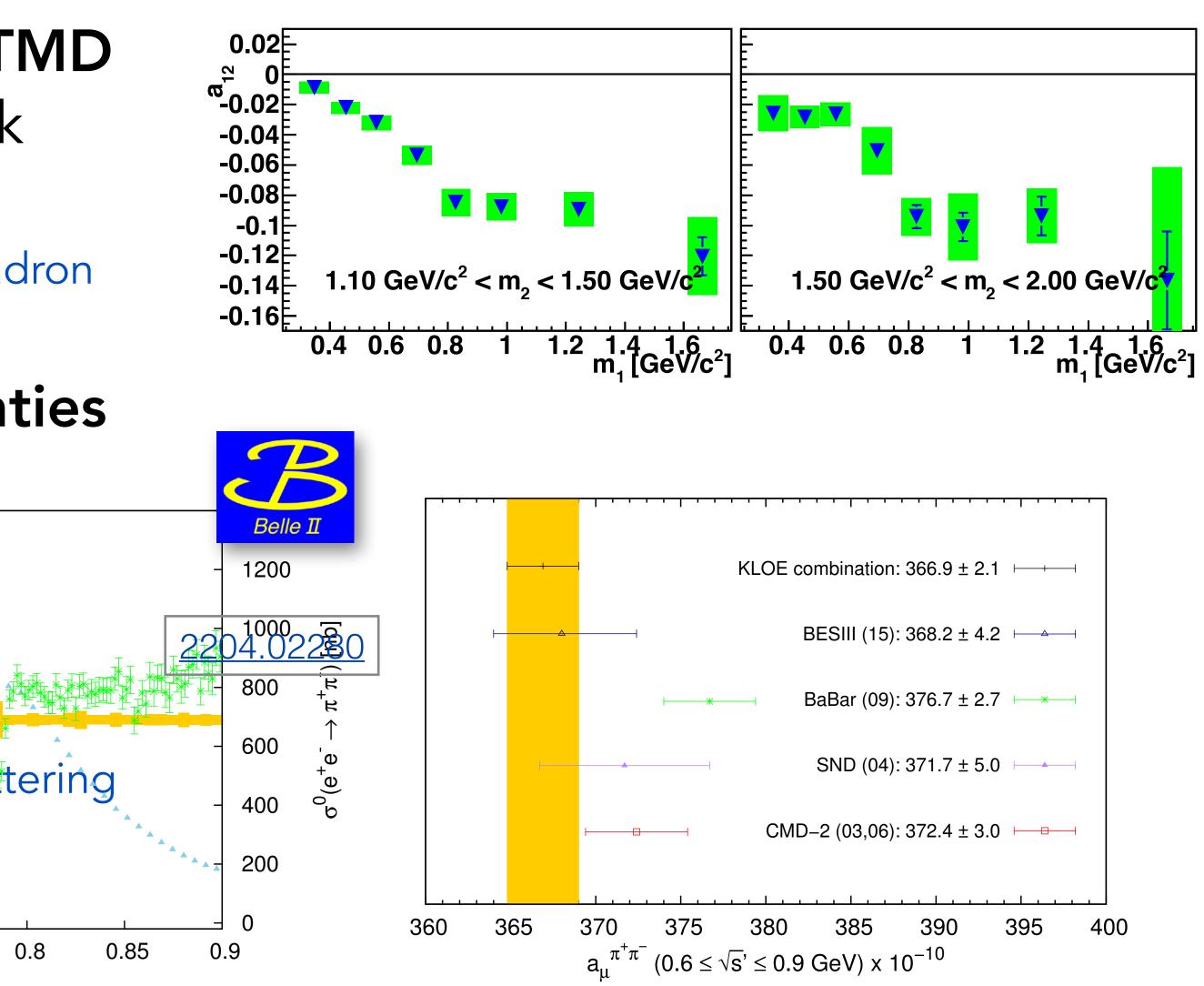
Manuel Franco Sevilla

Snowmass RPF Spring meeting: **Report from the Energy Frontier**

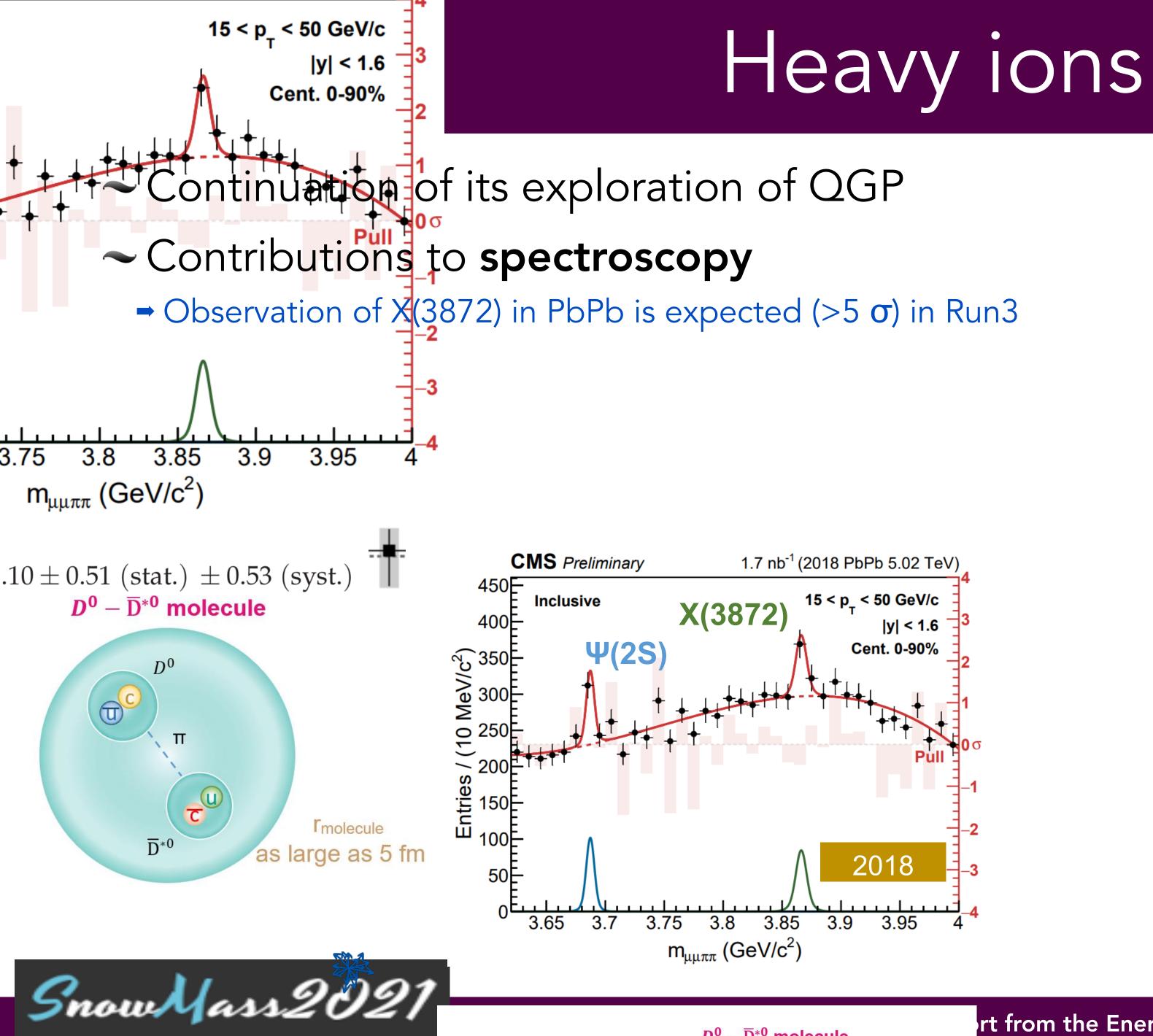


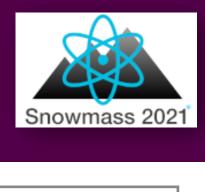
Belle II QCD studies

- ~ Belle II will provide key inputs for TMD PDF measurements at EIC on quark fragmentation
 - \rightarrow eg, transverse polarization of Λ hyperons, di-hadron correlations

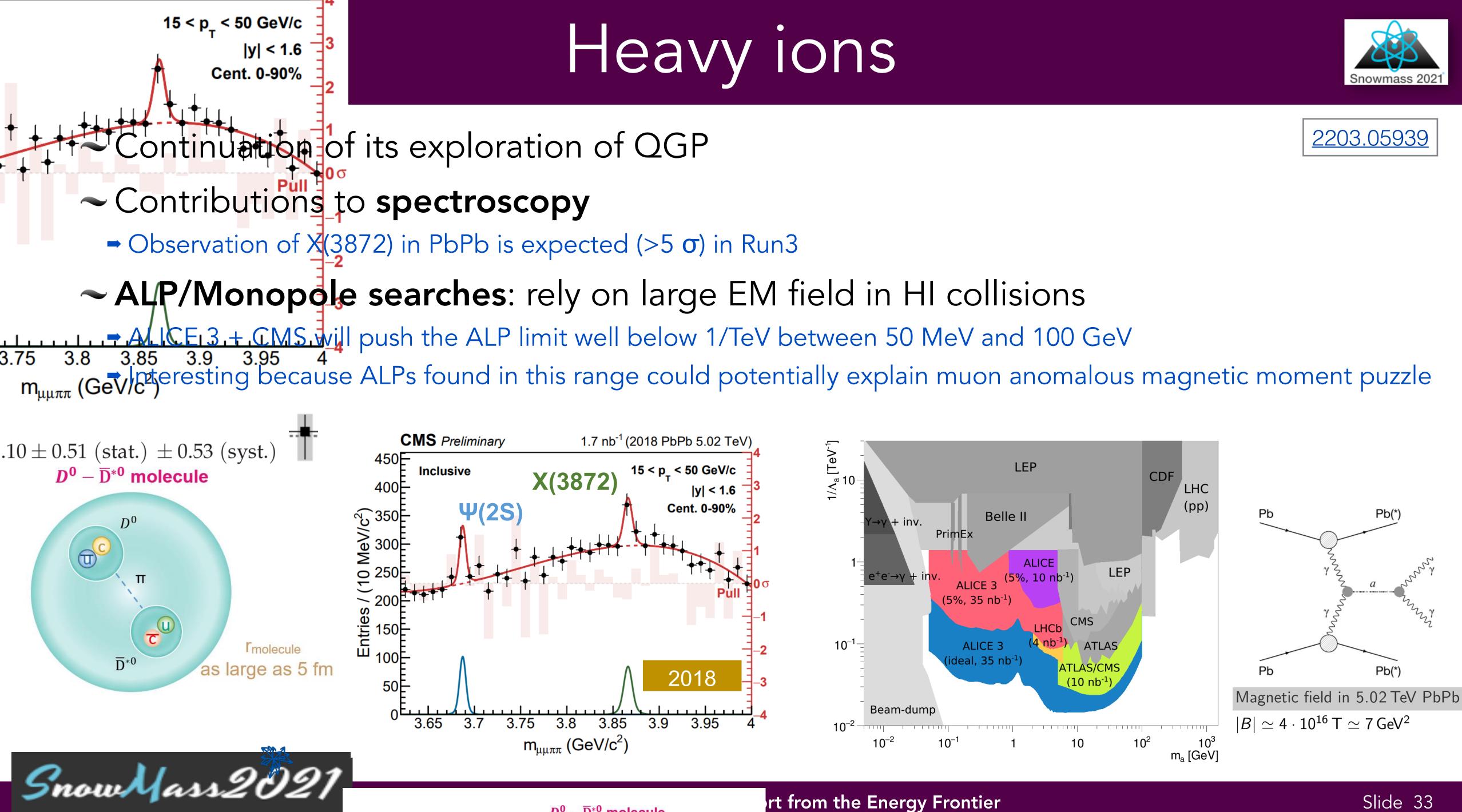

~ Will constrain systematic uncertainties

- on $g_{\mu} 2$ determination
- Hadronic Vacuum Polarization (et et a transported to the strength of the str contributor to uncertainty 0.1
 - ◆ Belle II measurements can help reduce this with $e^+e^- \rightarrow \pi^+\pi^-(\gamma) \text{ and } \tau^- \rightarrow \delta^2 \pi^- \pi^-$
- Next uncertainty is had onic light-by-light scattering (HLbL)
 - Constrained with $e^+e^- \rightarrow e^+e^{-2}h$


Manuel Franco Sevilla

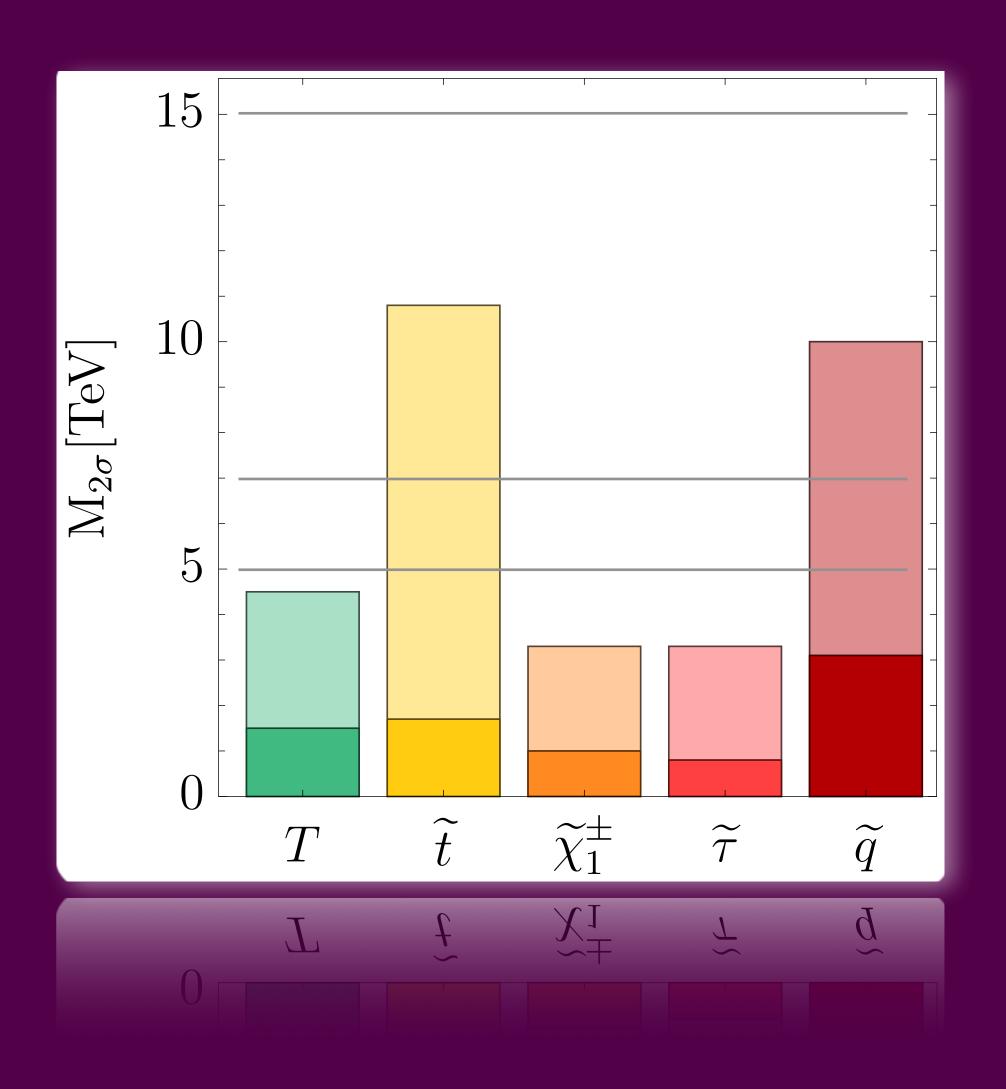


Snowmass RPF Spring meeting: Report from the Energy Frontier



 $D^0 - \overline{D}^{*0}$ molecule

2203.05939



 $D^0 - \overline{D}^{*0}$ molecule

EF08+EF09+EF10: BSM

Building the BSM program

EF08		Model specific explorations	Jim Hirschauer (FNAL)	Elliott Lipeles (UPenn)	Nausheen Shah (Wayne State)
EF09	BSM	More general explorations	Tulika Bose (UW-Madison)	Zhen Liu (Minnesota)	Simone Griso (LBL)
EF10		Dark Matter at colliders	Caterina Doglioni (Lund)	LianTao Wang (Chicago)	Antonio Boveia (Ohio St.)

- ~ Models connect the high-level unanswered questions in particle physics to specific phenomena in a self-consistent way
 - Allow the comparison of experimental reach between various approaches
 - + e.g. direct searches vs precision
 - Which models to consider? How to compare model spaces in a consistent way?

- e.g. long-lived and feebly-interacting particles, high-mass resonances
- How do we compare the results of different experiments in a more model-independent way to ensure complementarity and avoid big gaps in coverage?

How do we conduct searches in a more model-independent way?

23 papers submitted to EF08+EF10

TG	Title
EF0 8	BSM Neutrino physics: complementarity across energies
EF08	Future searches for SUSY at the LHC post Fermilab $(g-2)_{\mu}$
EF08	Comparison of SUSY spectra generators for natural SUSY and string landscape predictions
EF08	Heavy neutrinos at future linear e+e– colliders
EF08	Angular cuts to reduce the tau taubar+jet background to the higgsino signal at the LHC
EF08	Stau study at the ILC and its implication for the muon g-2 anomaly
EF08	Probing heavy Majorana neutrino pair production at ILC in a $U(I)_{B-L}$ extension of the S
EF08	Phenomenological aspects of composite Higgs scenarios: exotic scalars and vector-like quark
EF08	Global fit of 2HDM with future collider results
EF08	Evaluating the ILC SUSY reach in the most challenging scenario: stau NLSP, low ΔM , lowest
EF08	Naturalness
	LHCb future dark-sector sensitivity projections for Snowmass 2021
EFIO	Simplified dark matter models with charged mediators
EFIO	Higgs portal vector dark matter interpretation: review of Effective Field Theory approach an
EFIO	Event-level variables for semivisible jets using anomalous jet tagging
EFIO	Portal Matter and Dark Sector Phenomenology at Colliders
EFIO	WIMP Dark Matter at High Energy Muon Colliders
EFIO	New approach to DM searches with mono-photon signature
EFIO	New Physics with missing energy at future lepton colliders
EFIO	Prospects for searches for Higgs boson decays to dark photons at the ILC
EFIO	Scalar-mediated dark matter model at colliders and gravitational wave detectors
EFIO	Displaying dark matter constraints from colliders with varying simplified model parameters
EFIO	More is Different: Non-Minimal Dark Sectors and their Implications for Particle Physics, Astr Take-Away Lessons for Snowmass 2021

Manuel Franco Sevilla

Green: also submitted to RPF

	Authors	arXiv
	T. Han, J. Liao, H. Liu, et al	2203.06 I
	A. Aboubrahim, M. Klasen, P. Nath, et al	2107.0602
S	H. Baer, V. Barger, D. Martinez	2111.0309
	K. Mękała, J. Reuter, A. Filip Żarnecki	2202.0670
	H. Baer, V. Barger, D. Sengupta, et al	2203.0370
	M. Endo, K. Hamaguchi, S. Iwamoto, et al	2203.0705
Standard Model	J. Nakajima, A. Das, K. Fujii, et al	2203.0692
irks	A. Banerjee, D. Buarque Franzosi, G. Cacciapaglia, et al	2203.0727
	A. Beniwal, F. Rajec, M. Tobias Prim, et al	2203.0788
est cross-section	M.T. Núñez Pardo de Vera, M. Berggren, J. List	2203.1572
	N. Craig	2205.0570
	D. Craik, P. Ilten, D. Johnson, et al	2203.070
	T. Ghosh, C. Kelso, J. Kumar, et al	2203.08I
Ind ultraviolet complete models	M. Zaazoua, L.Truong, K.A.Assamagan, et al	2107.0125
	H. Beauchesne, G. Grilli di Cortona	2111.1215
	T. G. Rizzo	2202.0222
	T. Han, Z. Liu, L. Wang, et al	2203.0735
	J. Kalinowski, W. Kotlarski, K. Mekala, et al	2203.0677
	J. Kalinowski, T. Robens, A. Filip Zarnecki	2203.079
	S. Snyder, C. Weber, D. Zhang	2203.0827
	J. Liu, X. Wang, K. Xie	2203.1004
S	A. Albert, A. Boveia, O. Brandt, et al	2203.1203
trophysics, and Cosmology – 13	K. R. Dienes, B. Thomas	2203.1725

26 papers submitted to EF09

TG	Title
EF09	The Road Ahead for CODEX-b
EF09	Theory Frontier: Theory Meets the Lab
EF09	Studies of granularity of a hadronic calorimeter for tens-of-TeV jets at a 100 TeV pp collider
EF09	Physics potential of timing layers in future collider detectors
EF09	A fast method for particle tracking and triggering using small-radius silicon detectors
EF09	The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Ph
EF09	Model-independent searches for new physics in multi-body invariant masses
EF09	Event-based anomaly detection for new physics searches at the LHC using machine learning
EF09	A note on blind technique for new physics searches in particle physics
EF09	Sensitivity to Dijet Resonances at Proton-Proton Colliders
EF09	The Composite Higgs Signal at the Next Big Collider
EF09	Combined signatures of heavy Higgses and vectorlike fermions at the HL-LHC
EF09	Axion-Like Particles at High Energy Muon Colliders
EF09	Searches for Long-Lived Particles at the Future FCC-ee
EF09	Displaced fat-jets and tracks to probe boosted right-handed neutrinos in the $U(I)_{B-L}$ m
EF09	Two-fermion final states at International Linear Collider
EF09	Track-Based Triggers for Exotic Signatures
EF09	Strong CP Beyond Axion Direct Detection
EF09	Tau Neutrinos in the Next Decade: from GeV to EeV
EF09	Probing New Physics with $mu+mu \rightarrow bs$ at a Muon Collider
EF09	Recent Progress and Next Steps for the MATHUSLA LLP Detector
EF09	Sensitivity to decays of long-lived dark photons at the ILC
EF09	Probing the Electroweak Phase Transition with Exotic Higgs Decays
EF09	Theory, phenomenology, and experimental avenues for dark showers
EF09	PetaVolts per meter Plasmonics
EF09	Collider Physics Opportunities of Extended Warped Extra-Dimensional Models

Manuel Franco Sevilla

Green: also submitted to RPF

	Authors	arXiv
	G. Aielli, J. Alimena, J. Beacham, et al	2203.073
	R. Essig, Y. Kahn, S. Knapen, et al	2203.100
er	CH.Yeh, S.V. Chekanov, A.V. Kotwal, et al	90 . 4
	S.V. Chekanov, A.V. Kotwal, CH. Yeh, et al	2005.0522
	A.V. Kotwal	9 0. 4 4
Physics	G. Kasieczka, B. Nachman, D. Shih, et al	2101.0832
	S.V. Chekanov, S. Darmora, W. Islam, et al	2103.102
ng	S.V. Chekanov, W. Hopkins	2111.121
	S.V. Chekanov	2112.0954
	R. M. Harris, E. Gurpinar Guler, Y. Guler	2202.0338
	K. Lane	2203.037
	R. Dermisek, J. Kawamura, E. Lunghi, et al	2203.0385
	T. Han, T. Li, X. Wang	2203.0548
	C. B.Verhaaren, J. Alimena, M. Bauer, et al	2203.0550
model	R. Padhan, M. Mitra, S. Kulkarni, et al	2203.061
	T. Suehara	2203.0727
	K. F. Di Petrillo, J. N. Farr, C. Guo, et al	2203.073
	N. Blinov, N. Craig, M. J. Dolan, et al	2203.072
	R. Mammen Abraham, J. Alvarez-Muñiz, C. A. Argüelles, et	2203.0559
	W. Altmannshofer, S. Aditya Gadam, S. Profumo	2203.0749
	C. Alpigiani, J. Carlos Arteaga-Velázquez, A. Ball, et al	2203.0812
	L. Jeanty, L. Nosler, C. Potter	2203.0834
	M. Carena, J. Kozaczuk, Z. Liu, et al	2203.0820
	G. Albouy, J. Barron, H. Beauchesne, et al	2203.0950
	A.A. Sahai, M. Golkowski, S. Gedney, et al	2203.1162
	K.Agashe, J. H. Collins, P. Du, et al	2203.1330

$\sim e^+e^-$ colliders lower energies limit their direct detection potential

Manuel Franco Sevilla

Muon collider (muC)

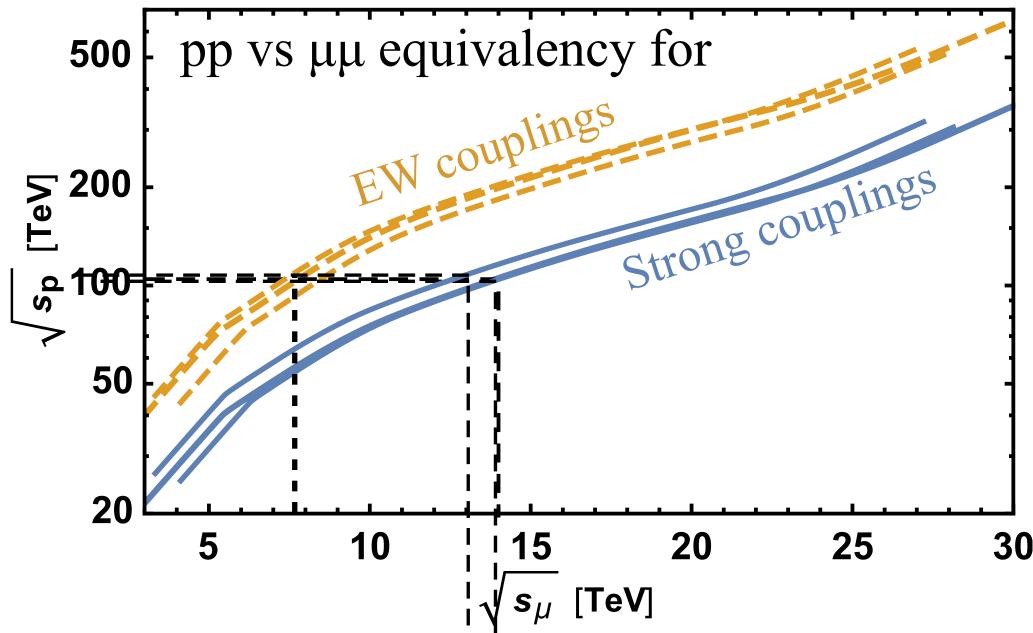
$\sim e^+e^-$ colliders lower energies limit their direct detection potential ~pp has great discovery potential, but loopholes for exclusion

$\sim e^+e^-$ colliders lower energies limit their direct detection potential ~ pp has great discovery potential, but loopholes for exclusion ~ Muon collider has the best of both worlds

- - → A lot of progress recently + e.g. full simulations, understanding how to mitigate beam induced backgrounds

"The physics case of a 3 TeV muon collider stage", arXiv:2203.07261 "Muon Collider Physics Summary", arXiv:2203.07256 "Strategies for Beam-Induced Background Reduction at Muon Colliders", arXiv:2203.06773 "A Muon Collider Facility for Physics Discovery", arXiv:2203.08033 "Simulated Detector Performance at the Muon Collider", arXiv:2203.07964 + 7 white papers on specific physics analyses

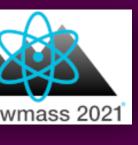
- "Promising Technologies and R&D Directions for the Future Muon Collider Detectors", arXiv:2203.07224



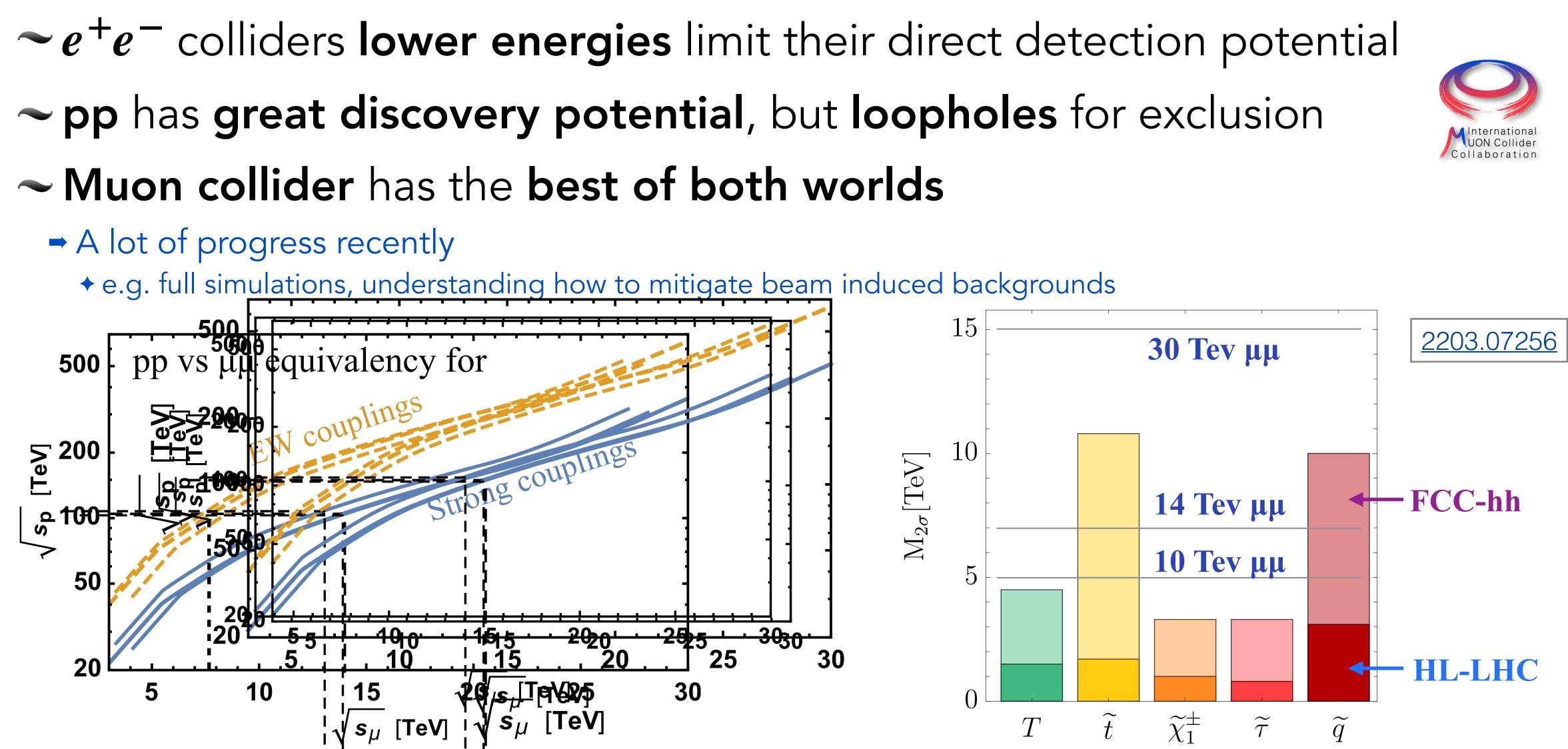
- ~ pp has great discovery potential, but loopholes for exclusion
- ~ Muon collider has the best of both worlds

→ A lot of progress recently

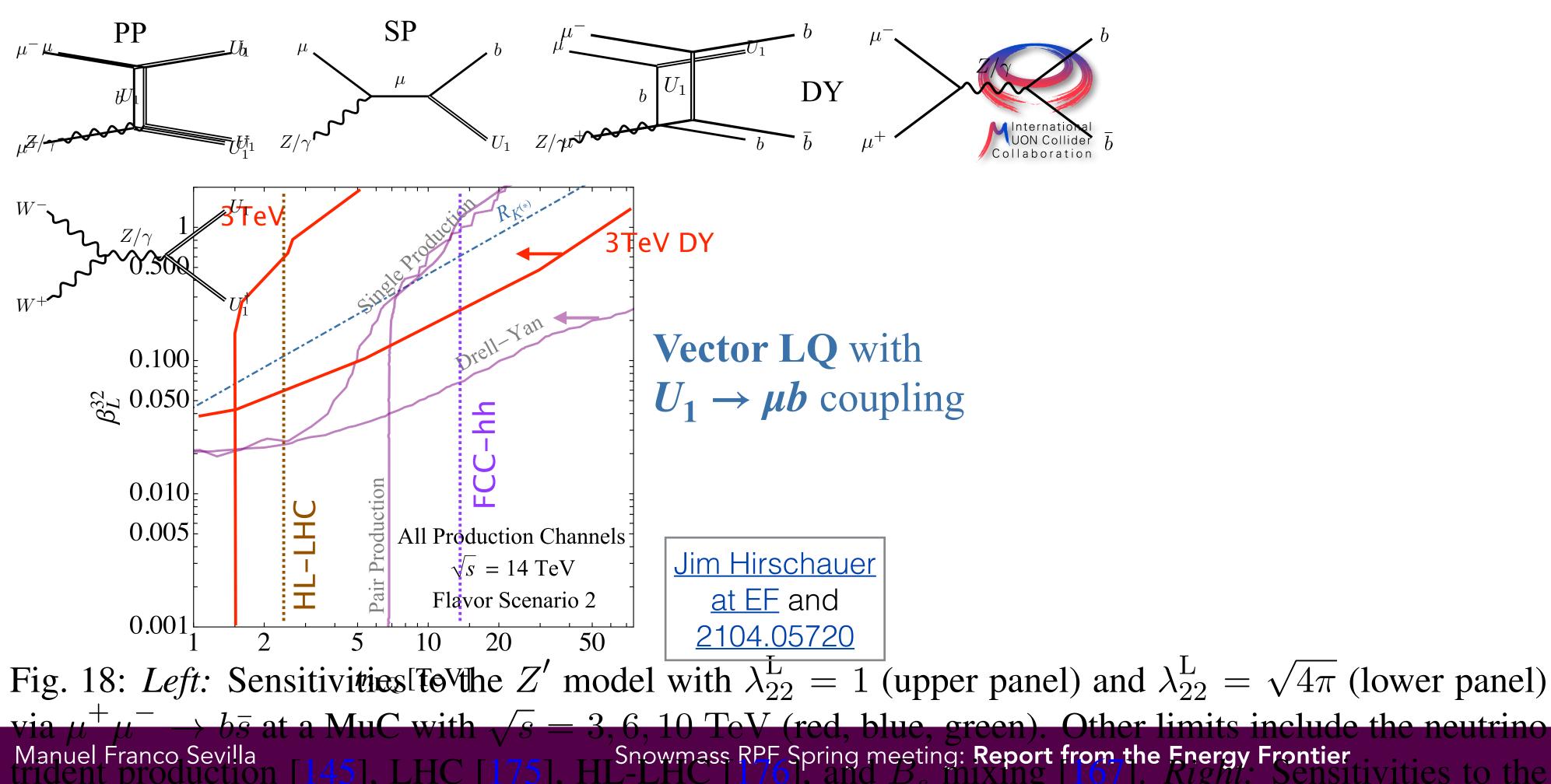
+ e.g. full simulations, understanding how to mitigate beam induced backgrounds

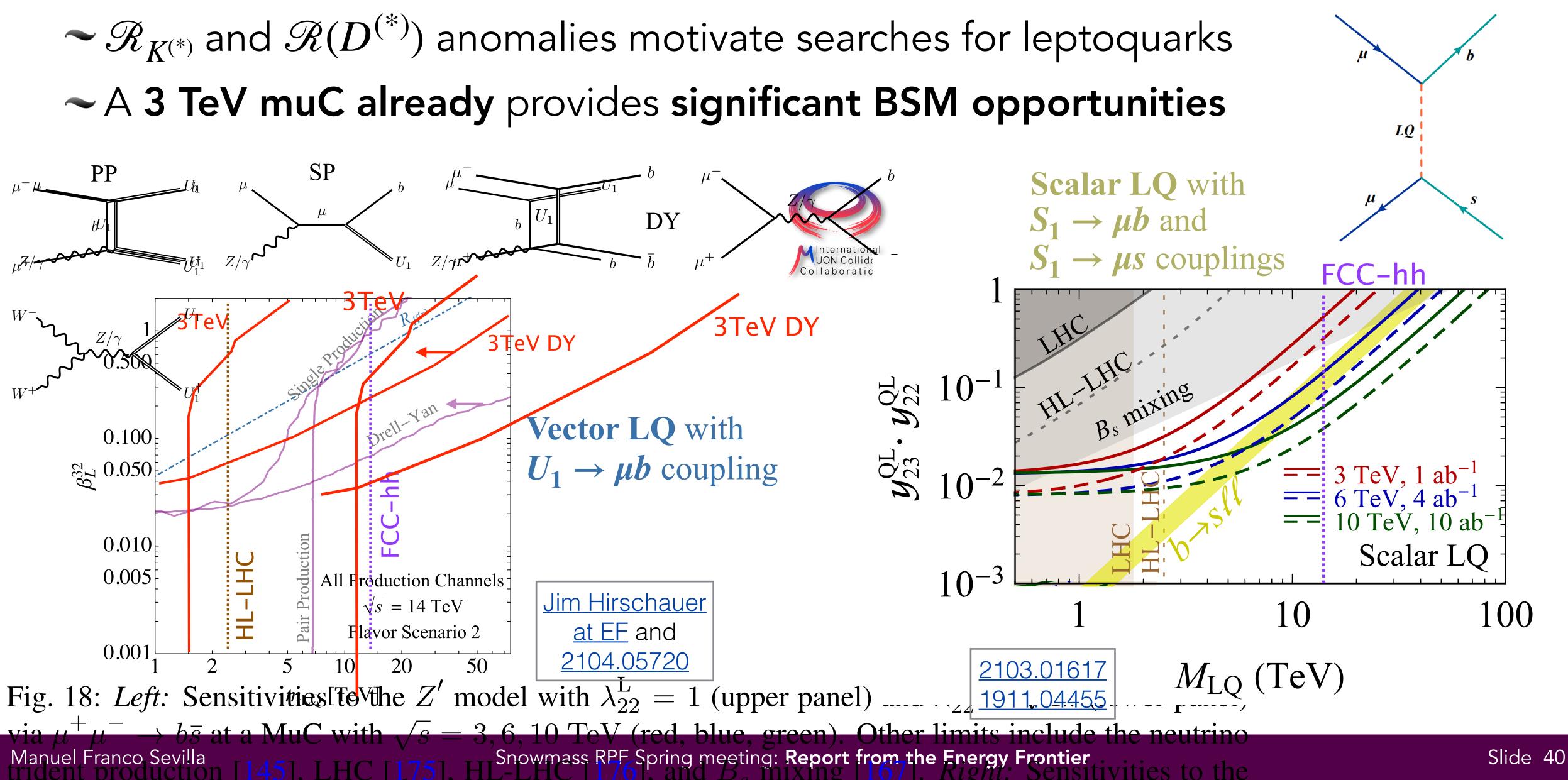

Manuel Franco Sevilla

$\sim e^+e^-$ colliders lower energies limit their direct detection potential

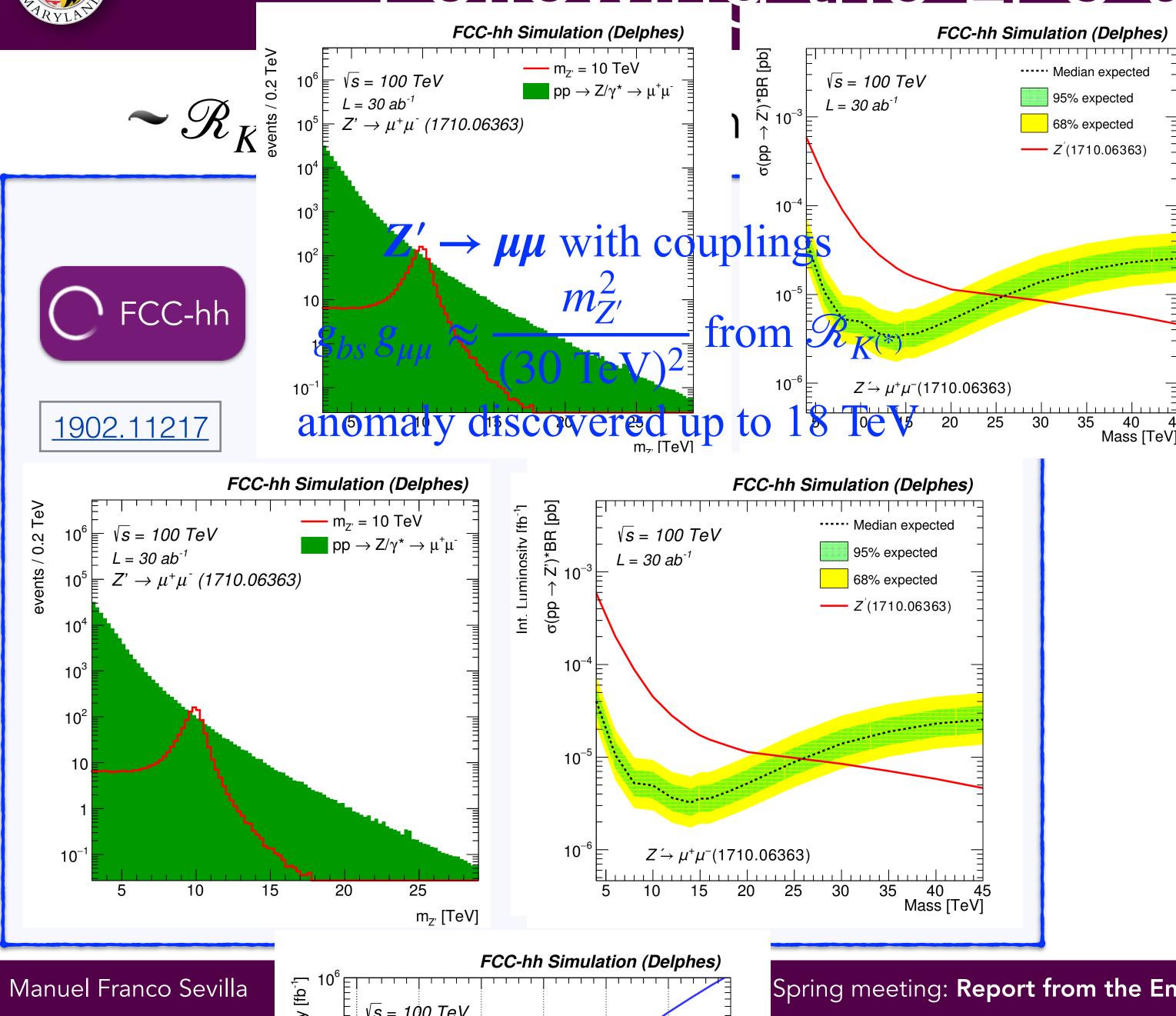


Manuel Franco Sevilla



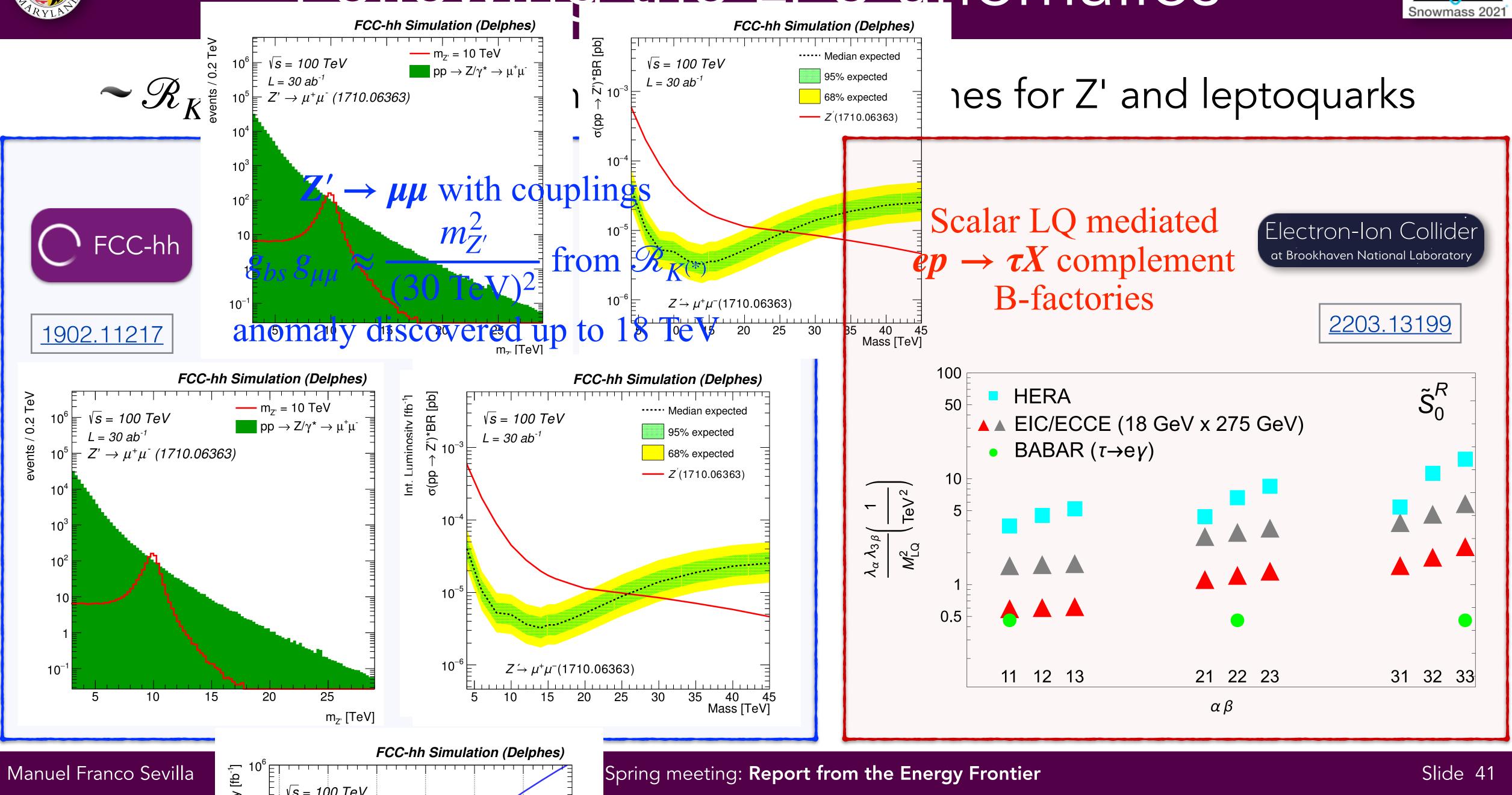

~ $\mathscr{R}_{K^{(*)}}$ and $\mathscr{R}(D^{(*)})$ anomalies motivate searches for leptoquarks ~ A 3 TeV muC already provides significant BSM opportunities

muC and leptoquarks



muC and leptoquarks

Following the LFU anomalies



40 45 Mass [TeV]

Following the LFU anomalies

Following $g_{\mu} - 2$

Manuel Franco Sevilla

Chakraborti, Heinemeyer, Saha:

in preparation

The reinforced 4.2σ discrepancy between the experimental result for the anomalous magnetic moment of the muon, $(g - 2)\mu$, and its Standard Model (SM) prediction, can elegantly be explained by the contributions of the electroweak (EW) sector of the Minimal Supersymmetric Standard Model (MSSM), while being in agreement with all other experimental and theoretical constraints.

Following $g_{\mu} - 2$

										Cha	krabo
											Tł
Hil	Ur	ni									an
ні-інс	PROJ	IECT	[<u>210</u>	7.06	021]				pr (E
Model	h^0	$\tilde{\ell}_{\mathrm{L}}$	$\tilde{\ell}_{ m R}$	$\tilde{ u}_{ m L}$	$ ilde{ au_1}$	$\tilde{\chi}_1^0$	$\tilde{\chi}_1^{\pm}$	Ωh^2	$\Delta a_{\mu}(\times 10^{-9})$		be
(a)	123.0	508.1	762.0	502.3	331.9	324.2	404.3	0.004	2.11		
(b)	123.4	305.0	463.0	295	251.7	237.4	237.6	0.002	2.33		
(c)	123.7	346.8	511.9	338.0	240.3	205.6	205.8	0.001	2.67		

0.003

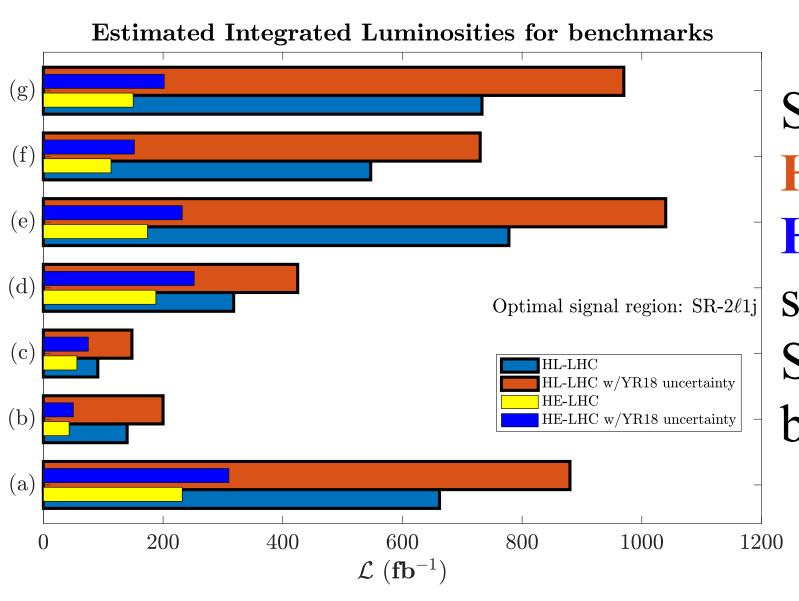
0.082

0.103

0.016

-337.6

1038.4


1227

2.14

1.94

2.57

1.94

 $415.7 \quad 370.4 \quad 337.3$

338.3 326.8

763.8

623.6

722.8 262.9 718.2 206.5 195.5

856.4 327.4 852.4 243.5 240.1

 $124.5 \quad 628.7 \quad 402.2$

(e)

(f)

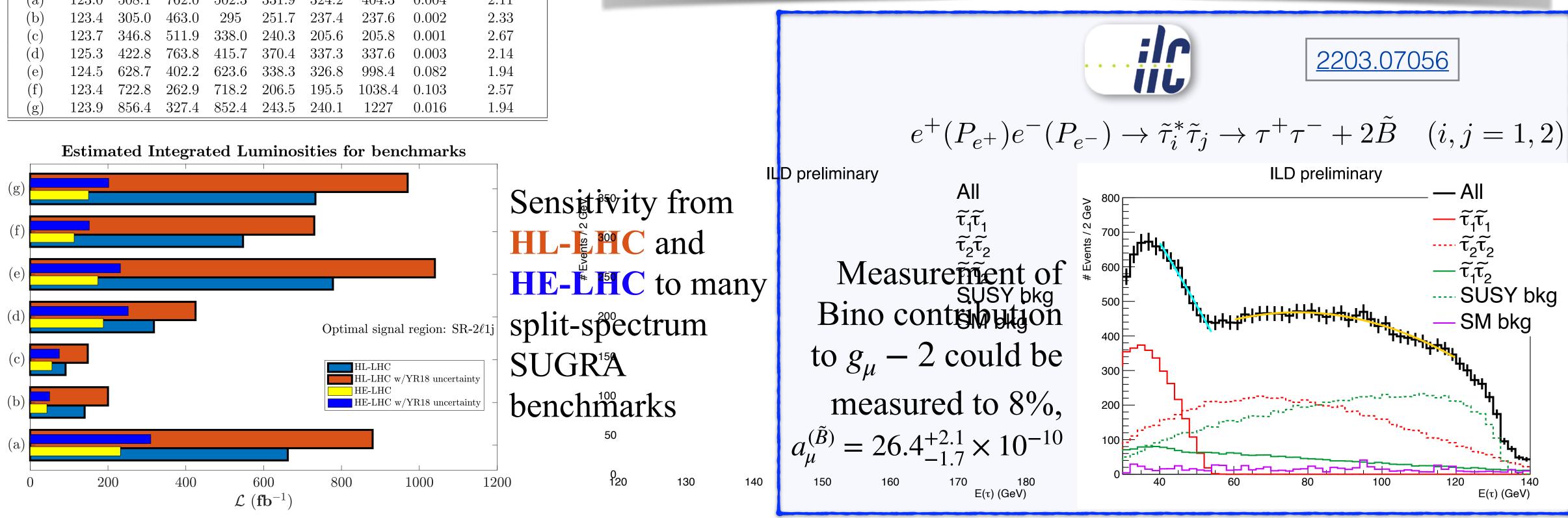
Sensitivity from **HL-LHC** and **HE-LHC** to many split-spectrum SUGRA benchmarks

Manuel Franco Sevilla

orti, Heinemeyer, Saha:

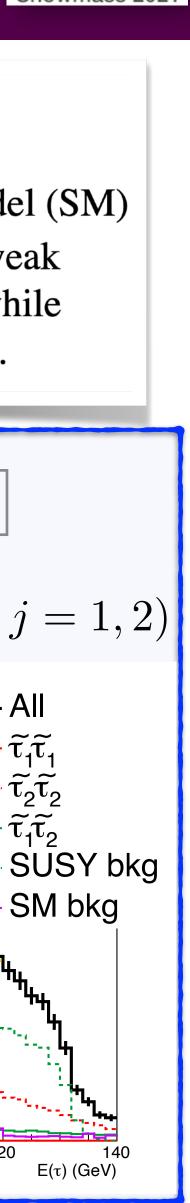
in preparation

The reinforced 4.2 σ discrepancy between the experimental result for the nomalous magnetic moment of the muon, $(g - 2)\mu$, and its Standard Model (SM) rediction, can elegantly be explained by the contributions of the electroweak EW) sector of the Minimal Supersymmetric Standard Model (MSSM), while being in agreement with all other experimental and theoretical constraints.



Following $g_{\mu} - 2$

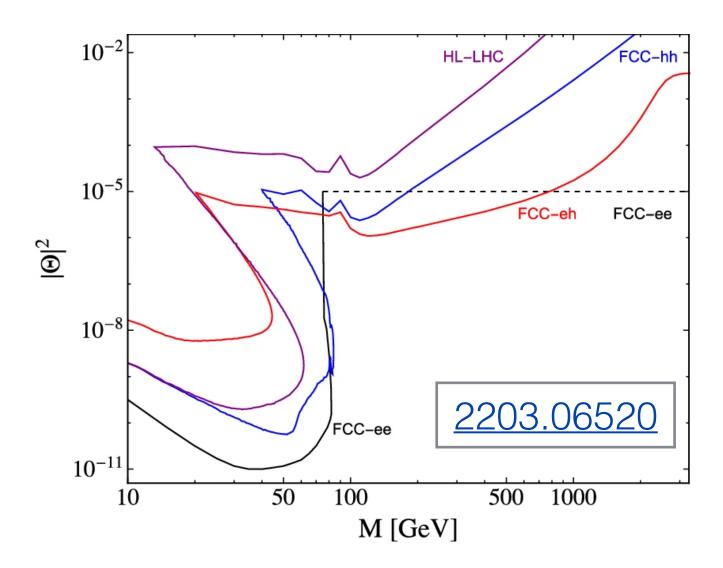
										Cha	krabo
											Tł
Hil	Ur	ni									an
HL-LHC	PROJ	IECT	[<u>210</u>	7.06	021]				pr (E
Model	h^0	$ ilde{\ell}_{ m L}$	$ ilde{\ell}_{ m R}$	$ ilde{ u}_{ m L}$	$ ilde{ au}_1$	$ ilde{\chi}^0_1$	$\tilde{\chi}_1^{\pm}$	Ωh^2	$\Delta a_{\mu}(\times 10^{-9})$		be
(a)	123.0	508.1	762.0	502.3	331.9	324.2	404.3	0.004	2.11		
(b) (c)	$123.4 \\ 123.7$	$\begin{array}{c} 305.0\\ 346.8\end{array}$	$\begin{array}{c} 463.0\\511.9\end{array}$	$\begin{array}{c} 295\\ 338.0 \end{array}$	$251.7 \\ 240.3$	$237.4 \\ 205.6$	$237.6 \\ 205.8$	$\begin{array}{c} 0.002\\ 0.001 \end{array}$	$2.33 \\ 2.67$		


Manuel Franco Sevilla

orti, Heinemeyer, Saha:

in preparation

The reinforced 4.2 σ discrepancy between the experimental result for the nomalous magnetic moment of the muon, $(g - 2)\mu$, and its Standard Model (SM) rediction, can elegantly be explained by the contributions of the electroweak EW) sector of the Minimal Supersymmetric Standard Model (MSSM), while being in agreement with all other experimental and theoretical constraints.

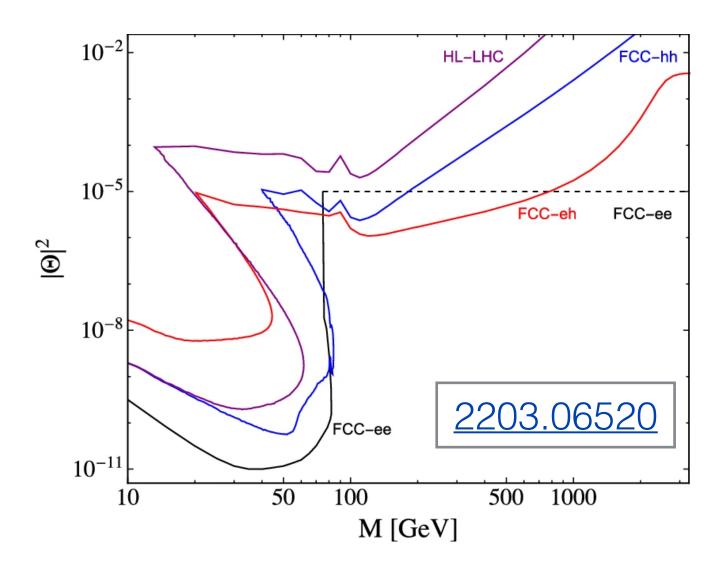

~ A lot of growing interest in the recent years on Long-lived particles (LLP)

- Many results from LHC, but also from b-factories and dedicated experiments
- LLP searches are an attractive alternative (and complement) to mainstream new physics searches, but challenge conventional reconstruction and trigger methods

Model independent searches

\sim A lot of growing interest in the recent years on Long-lived particles (LLP)

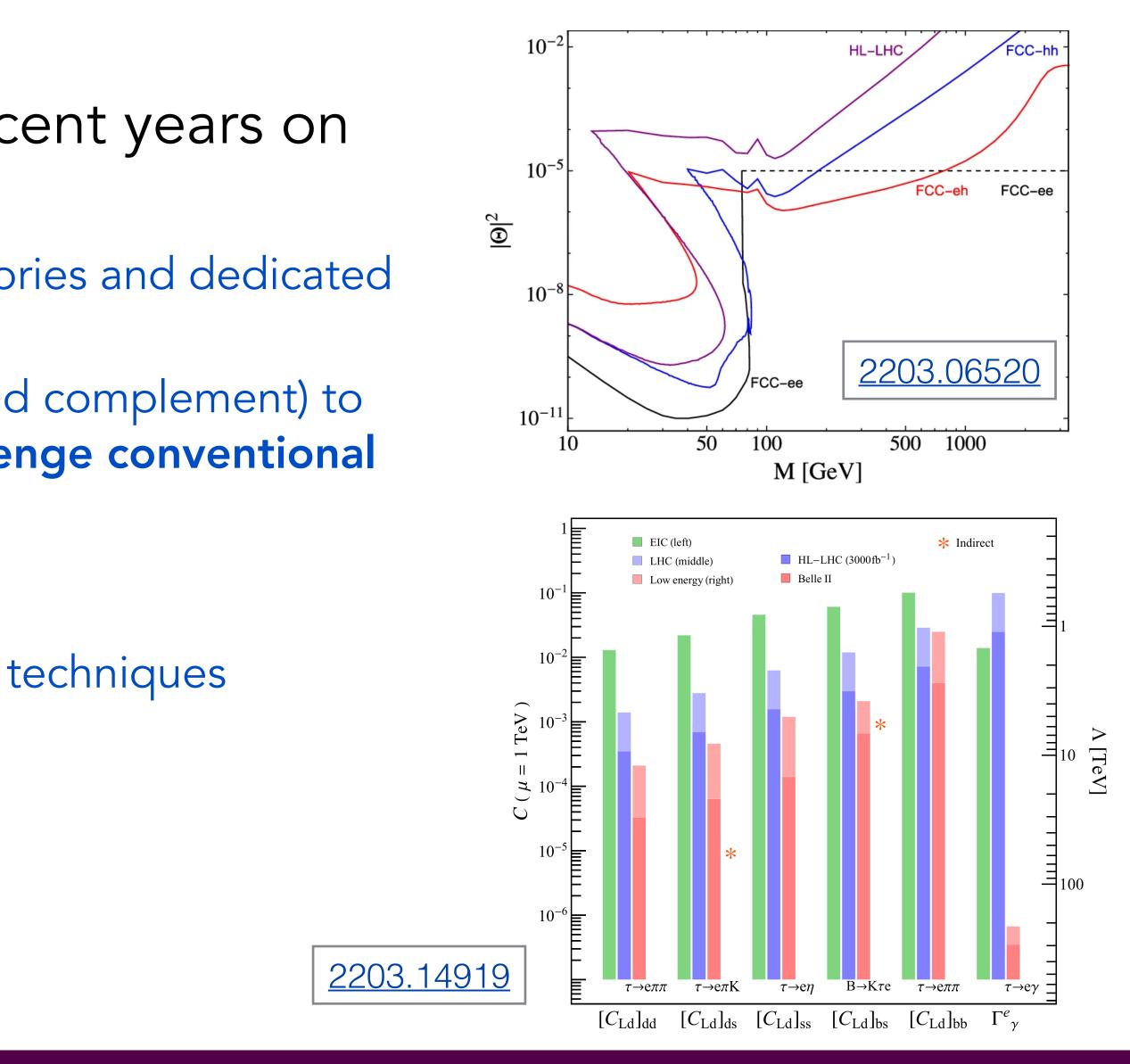
- Many results from LHC, but also from b-factories and dedicated experiments
- LLP searches are an attractive alternative (and complement) to mainstream new physics searches, but challenge conventional reconstruction and trigger methods


~ Model Agnostic Searches

Lot of interest in using Machine Learning/AI techniques + eg,2101.08320 (LHC olympics), 2111.12119

Model independent searches

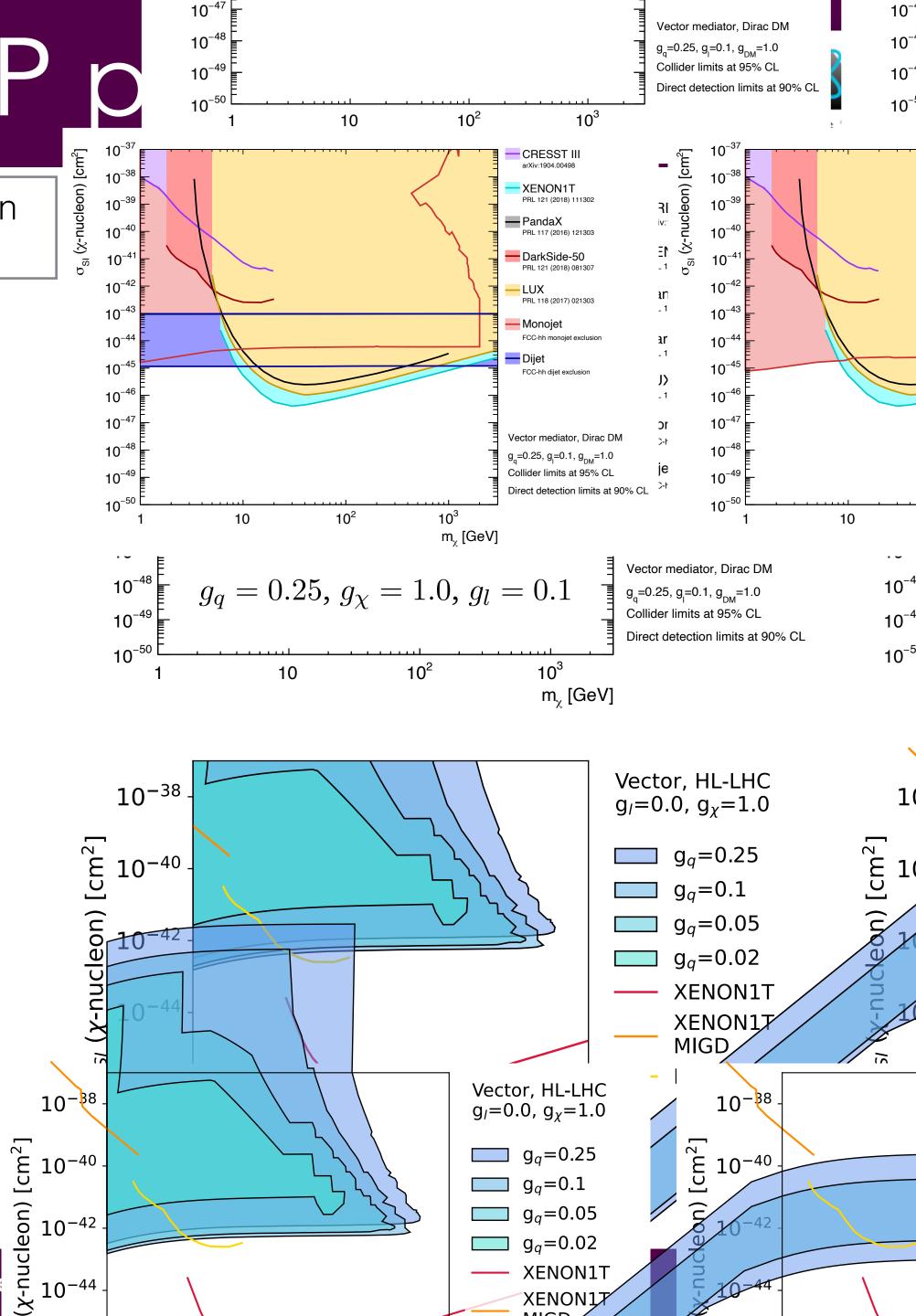
\sim A lot of growing interest in the recent years on Long-lived particles (LLP)


- Many results from LHC, but also from b-factories and dedicated experiments
- LLP searches are an attractive alternative (and complement) to mainstream new physics searches, but challenge conventional reconstruction and trigger methods

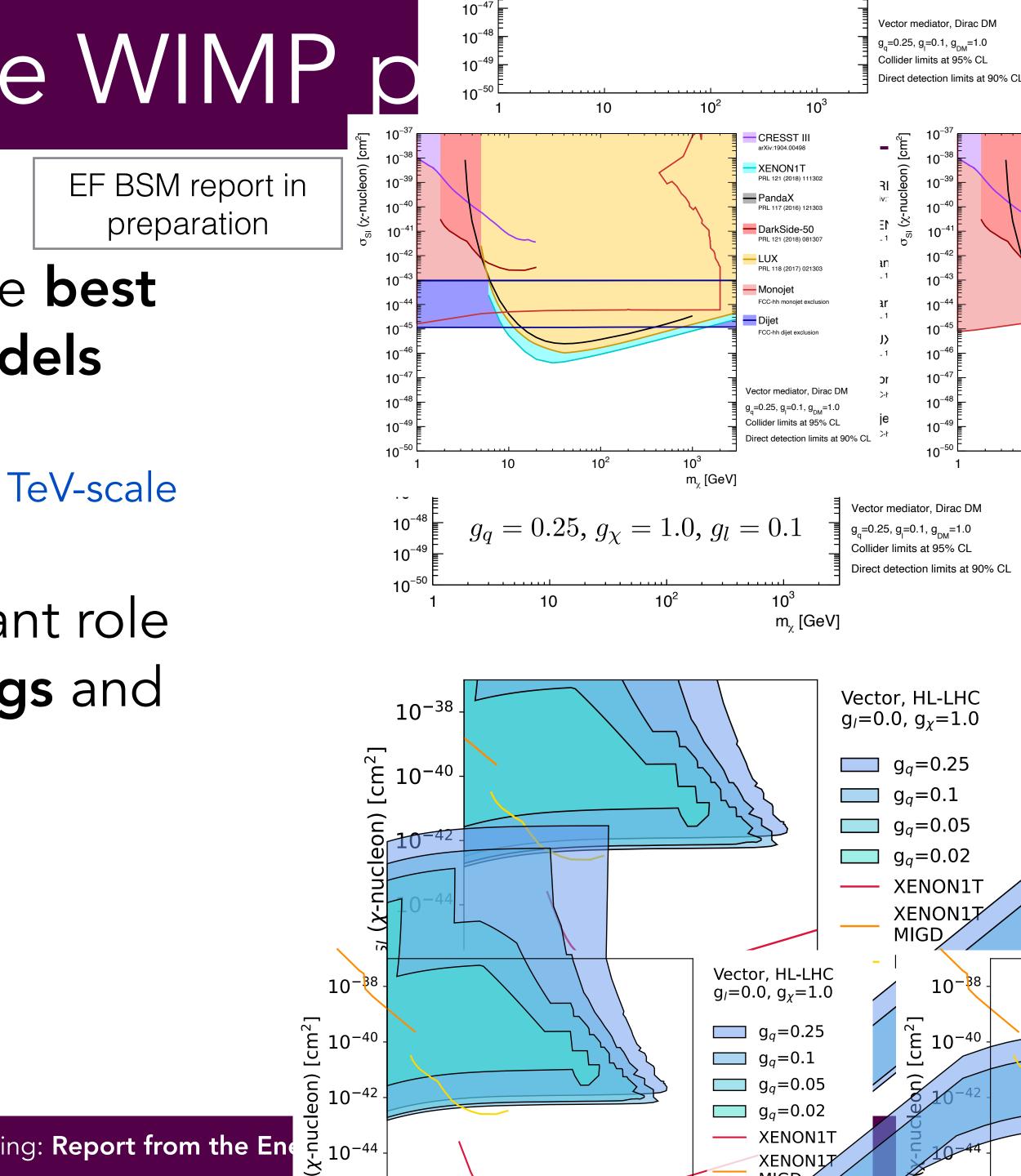
~ Model Agnostic Searches

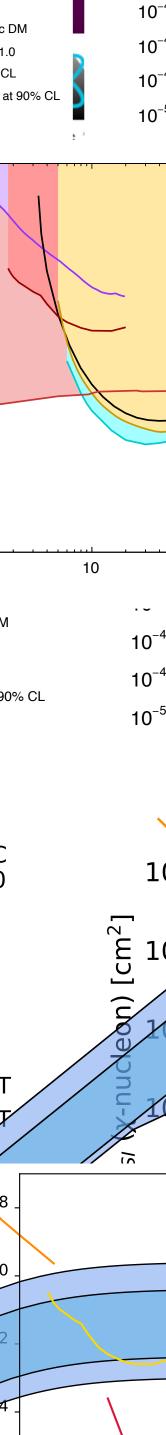
- Lot of interest in using Machine Learning/AI techniques + eg,2101.08320 (LHC olympics), 2111.12119
- ~ Lepton flavor violating searches
 - Led by RPF, but high energy can contribute

Model independent searches

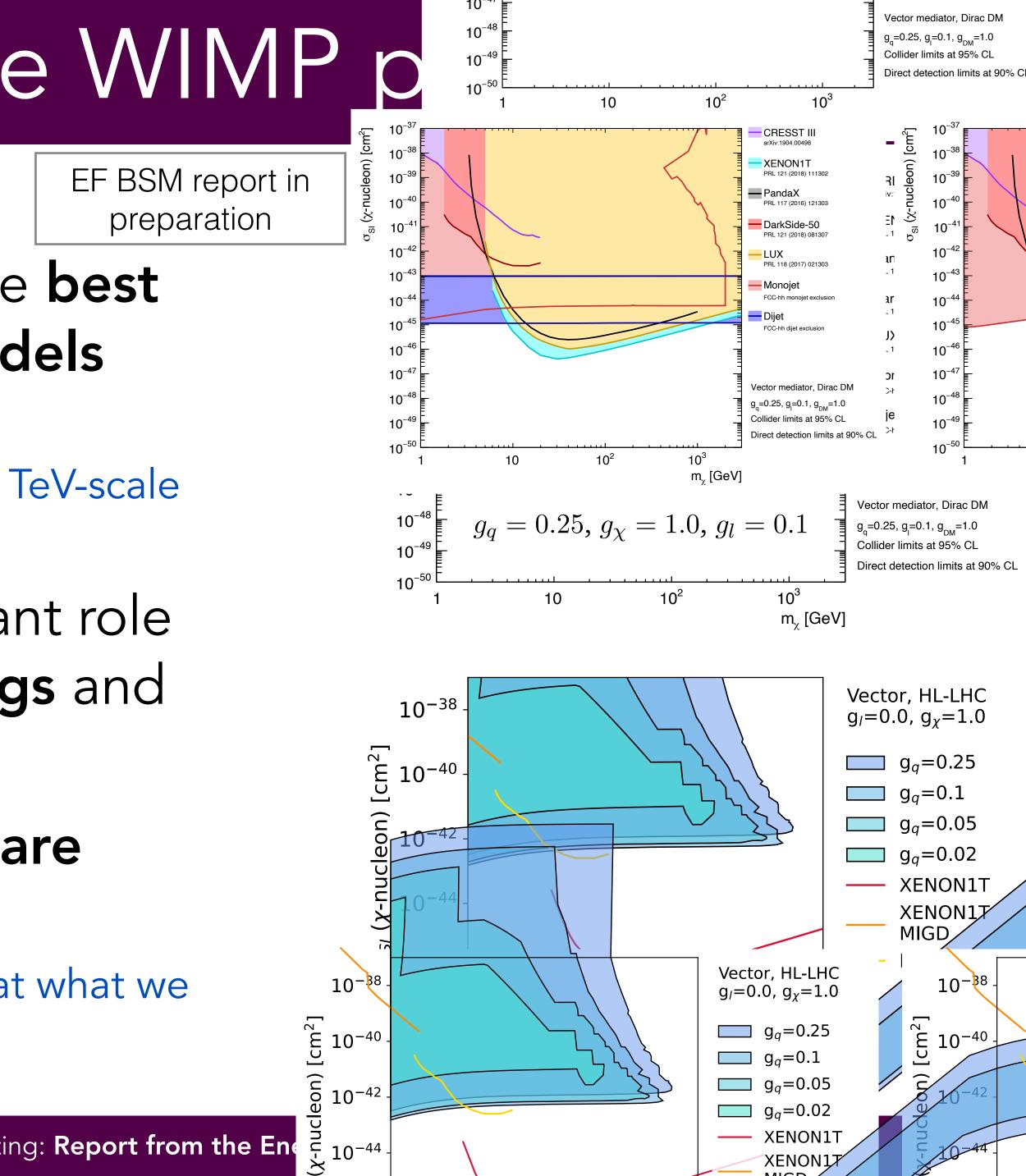


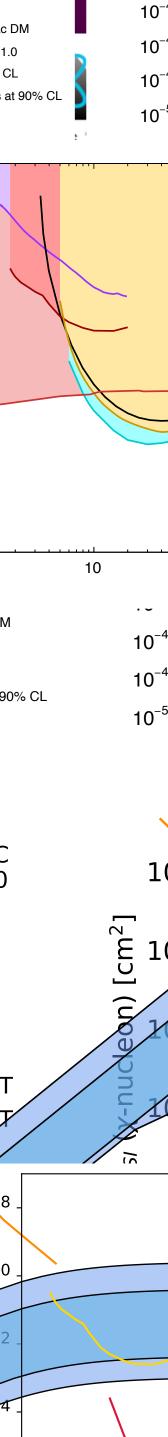
~ A future **hadron collider** has the **best** reach for simple mediator models


- → If they have quark couplings
- Collider bounds are strongest in cases of TeV-scale mediator masses


EF BSM report in preparation

- ~ A future **hadron collider** has the **best** reach for simple mediator models
 - → If they have quark couplings
 - Collider bounds are strongest in cases of TeV-scale mediator masses
- ~ Electron colliders play significant role in models with lepton couplings and with mixing to $Z/H/\gamma$




— XENON1T

XENON17

- A future hadron collider has the best reach for simple mediator models
 - If they have quark couplings
 - Collider bounds are strongest in cases of TeV-scale mediator masses
- Electron colliders play significant role
 in models with lepton couplings and
 with mixing to Z/H/γ
- Complementary experiments are essential
 - We'll need cosmological confirmation that what we discover is dark matter

~ Many non-WIMP DM models and rich dark sectors accessible to colliders

- eg, vector (dark photon), scalar and axion portal
- We shouldn't restrict/stop our searches even when the model is overproducing DM
 - Caveats to determine what coupling is needed to make up the entirety of the relic

Dark matter: beyond the WIMP

CMS EXO 20 004 Upper limit on mixing parameter ε 10 -WP in preparation Vector mediator 10 - 2 $g_x = 1.0$ $M_{DM} = M_{med}/3$ 10-3 $alpha_D = 0.10$ 10-4 10 - 5 CMS observed 10-6 O - CMS expected 68% CL 10 7 95% CL DMsimp expected Relic DMsimp 10-8 Relic HAHM AHM expected 10-9 HAHM exp HL-LHC DMsimp exp HL-LHC 10 - 10 10¹ 10² 10³ M_{DM} (GeV) 10^{-3} 10^{-4} 10^{-5} 10^{-6} Θ^2 10^{-7} LHC (coupling) FCC-ee(coupling) 10^{-8} $BR(h\chi\chi)=10\%$ HL-LHC 10^{-9} FCC-ee

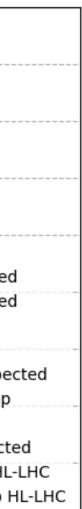
FCC-hh

50

25

 10^{-10}

200


175

150

100 125

 $m_{\phi}(GeV)$

75

Dark matter: beyond the WIMP

~ Many non-WIMP DM models and rich dark sectors accessible to colliders

- eg, vector (dark photon), scalar and axion portal
- We shouldn't restrict/stop our searches even when the model is overproducing DM
 - Caveats to determine what coupling is needed to make up the entirety of the relic

Results from "generic WIMP" searches often apply to non-WIMP

- eq, see monojet+X at CMS recast on right figures
- Can reinterpret RPF benchmarks too

CMS EXO 20 004 Upper limit on mixing parameter ε 10 -WP in preparation Vector mediator 10 - 2 $g_x = 1.0$ $M_{DM} = M_{med}/3$ 10-3 $alpha_D = 0.10$ 10-4 10 - 5 CMS observed 10-6 O- CMS expected 58% CL 10 7 DMsimp expected Relic DMsimi 10-8 Relic HAHM 10-9 DMsimp exp HL-LHC 10 - 10 10¹ 10² 10³ M_{DM} (GeV) 10^{-3} 10^{-4} 10^{-5} 10^{-6} Θ^2 10^{-7} LHC (coupling) FCC-ee(coupling) 10^{-8} $BR(h\chi\chi)=10\%$

HL-LHC

FCC-ee

FCC-hh

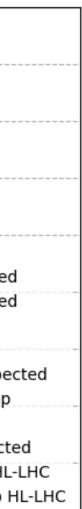
50

25

 10^{-9}

 10^{-10}

200


175

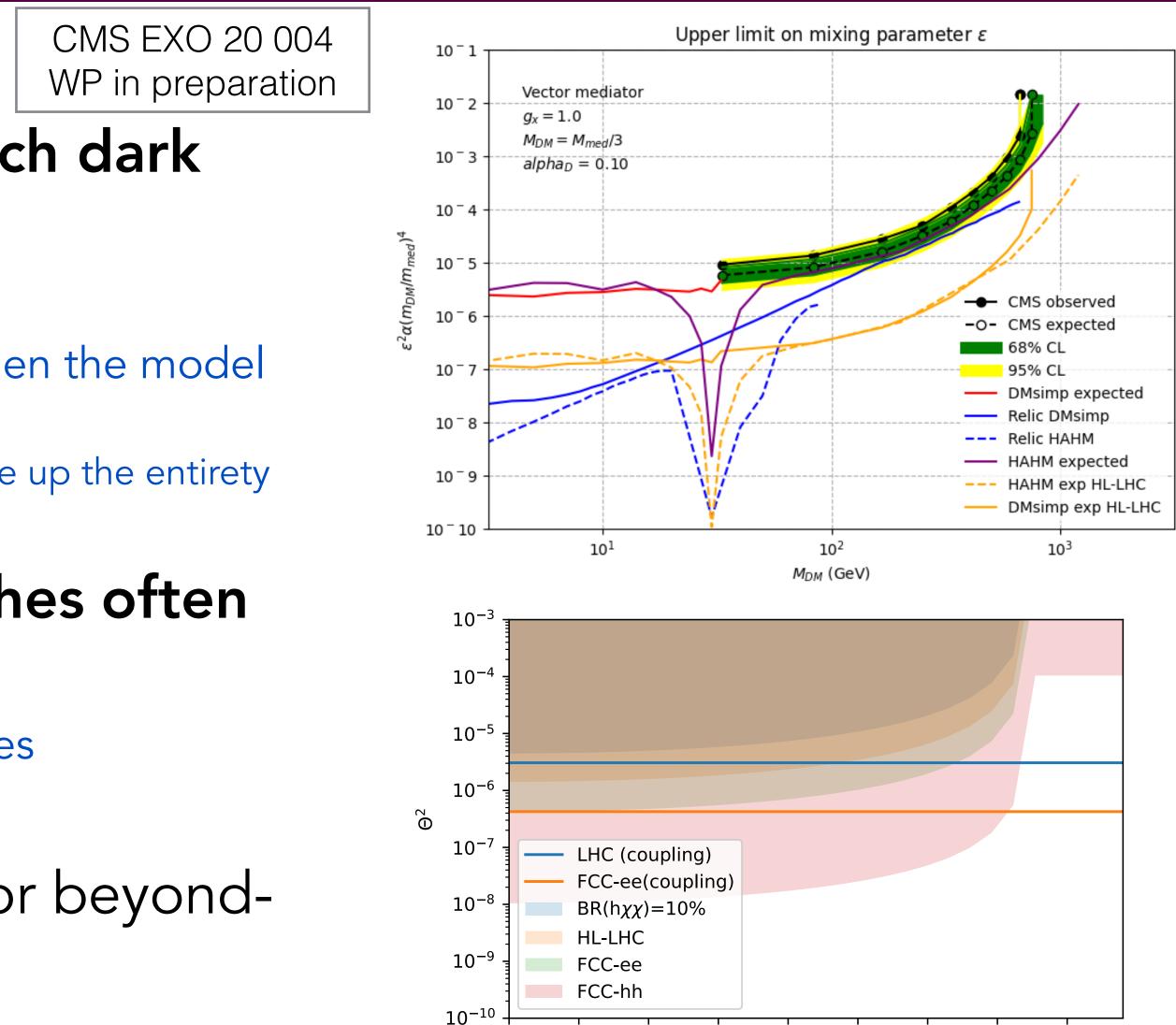
150

100 125

 $m_{\phi}(GeV)$

75

Dark matter: beyond the WIMP


~ Many non-WIMP DM models and rich dark sectors accessible to colliders

- eg, vector (dark photon), scalar and axion portal
- We shouldn't restrict/stop our searches even when the model is overproducing DM
 - Caveats to determine what coupling is needed to make up the entirety of the relic

Results from "generic WIMP" searches often apply to non-WIMP

- eq, see monojet+X at CMS recast on right figures
- Can reinterpret RPF benchmarks too
- ~ Colliders can share infrastructure for beyond-WIMP experimental facilities
 - → eg, forward facilities

50

75

150 175 200

100 125

 $m_{\phi}(GeV)$

- ~ Dark matter is a central problem in Snowmass
- ~ Next decade: exploratory phase where new ideas can be implemented on short timescales operating alongside longer-term projects on a diversity of project scales

⇒ eg HL-LHC, FCC, Gen-3 direct detection, RPF accelerator experiments

- ~ Ongoing Snowmass-wide, cross-frontier effort to highlight dark matter complementarity
 - This work builds from and contextualizes the work ongoing towards the white papers in the individual TGs and Frontiers
- ~ Cross-frontier whitepaper expected in the near future, including key messages from EF, CF, NF and **RPF**, will be finalized in Seattle

Dark matter complementarity in Snowmass

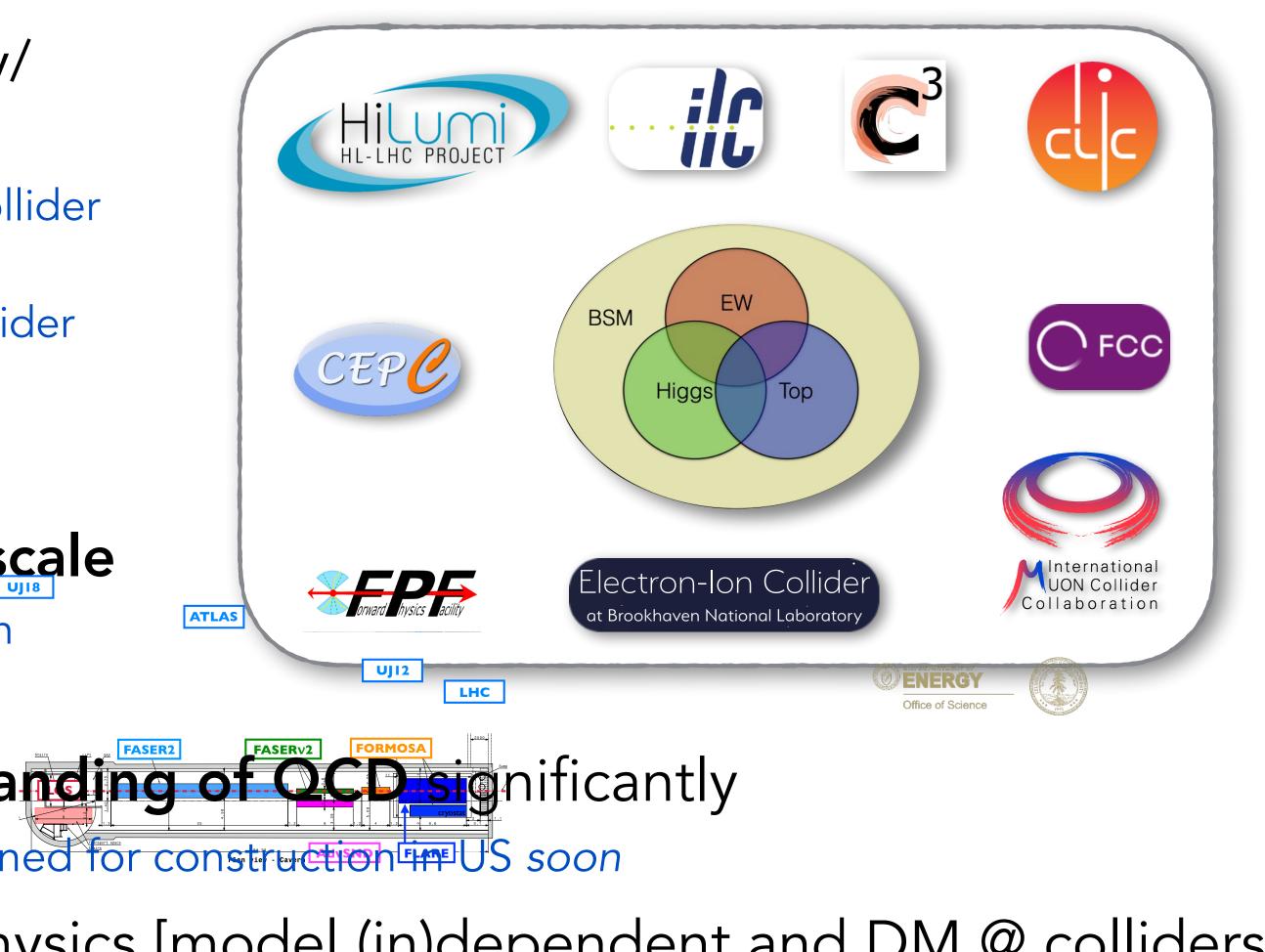
Credit C. Doglioni

https://gordonwatts.github.io/snowmass-loi-words

Word Clouds

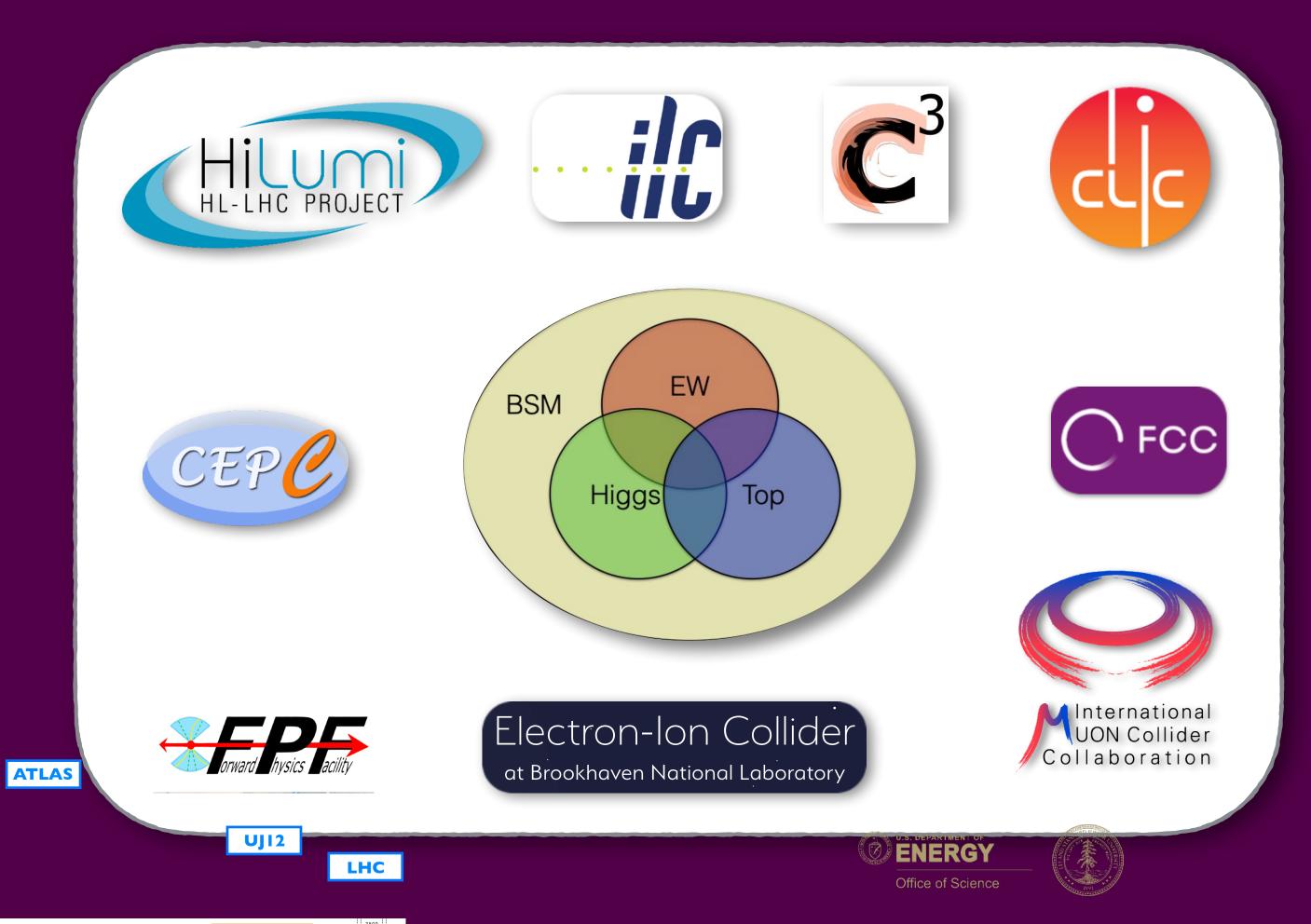
Word clouds are made by looking at the word frequency in the LOI's. The more frequent the word, the larger the font-size in the word cloud.

All LOI's



- ~ Higgs boson most exciting discovery/ confirmation in this century
 - Traditionally, discovery of particles followed by collider to study particles
 - The Higgs boson will be key in selecting next collider
- ~ Proposals for linear and circular $e^+e^$ colliders would have **unprecedented** reach at precision physics at the EW scale
 - Hadron or muon colliders key for several precision measurements like HH
- ~ Next years will **improve** our **understanding of Octons i** nificantly
 - EIC only new large-scale accelerator facility planned for construction in US soon
- - Muon collider could be great option for searches for BSM physics

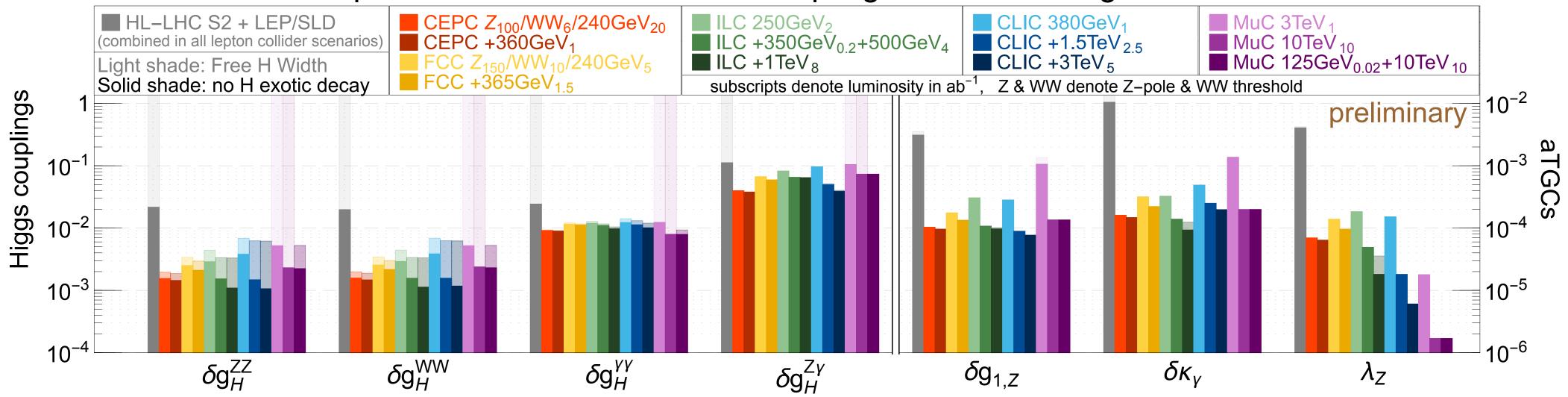
Summary



~ Comprehensive program of BSM physics [model (in)dependent and DM @ colliders]

-2500-

LOS


UJ18

Backup

Some preliminary results

precision reach on effective couplings from SMEFT global fit

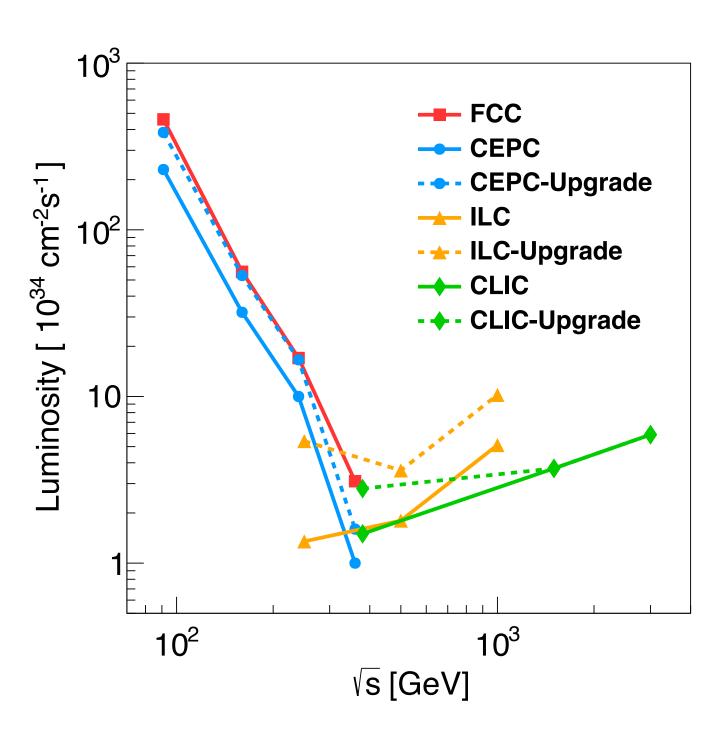
de Blas, Du, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, in preparation

- be obtained using only ZH runs;

Z-pole and WW runs at circular e+e- colliders can help improve significantly the Higgs coupling precisions with respect to what can

beam polarizations at linear e+e- colliders can play special roles that help lift degeneracies of different new physics effects, as a result of which similar Higgs coupling precisions can be achieved at linear e+e- with less integrated luminosity compared to circular e+e-.

Working point	Z years 1-2	Z, later	WW	HZ	tī	_ - J	(s-channel H)	
$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157, 163	240	340-350	365	m _H	
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	115	230	28	8.5	0.95	1.55	(30)	
Lumi/year $(ab^{-1}, 2 \text{ IP})$	24	48	6	1.7	0.2	0.34	(7)	
Physics goal (ab ⁻¹)	150		10	5	0.2	1.5	(20)	
Run time (year)	2	2	2	3	1	4	(3)	
				$10^{6} \text{ HZ} +$	$10^6 t\overline{t}$			
Number of events	$5 \times 10^{12} \mathrm{~Z}$		10^8 WW	$ $ 25k WW \rightarrow H	+200k HZ		(6000)	
					$ +50 \mathrm{kWW} \rightarrow \mathrm{H} $			
Operation mode	Z factory V	VW thresh	old Higgs fa	$t\overline{t}$				
Operation mode $\sqrt{s} \; (\text{GeV})$	Z factory V 91.2	VW thresh 160	old Higgs fa 240	J				
				J	C?		2	
$\sqrt{s} \; (\text{GeV})$	91.2 2		240) <u>360</u> 5				
\sqrt{s} (GeV) Run time (year) Instantaneous luminosity	91.2 2 v	160 1	240 10) 360 5 0.83			3	

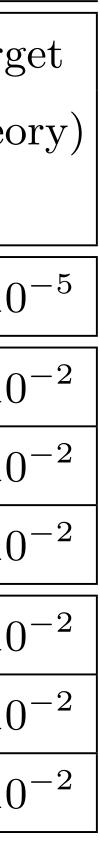

Manuel Franco Sevilla

Circular e^+e^- nominal running

CP violation in Higgs sector

$$f_{CP}^{HX} \equiv \frac{\Gamma_{H \to X}^{CP \text{ odd}}}{\Gamma_{H \to X}^{CP \text{ odd}} + \Gamma_{H \to X}^{CP \text{ even}}}$$

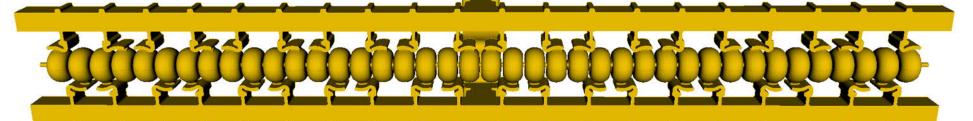
TABLE I: List of expected precision (at 68% C.L.) of CP-sensitive measurements of the parameters f_{CP}^{HX} defined in Eq. (2). Numerical values are given where reliable estimates are provided, \checkmark mark indicates that feasibility of such a measurement could be considered.


<u>2205.07715</u>

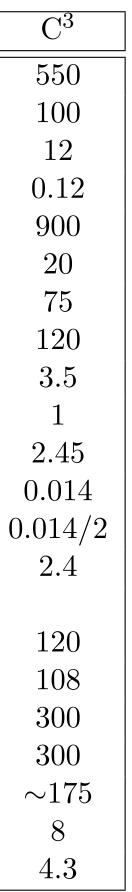
Collider	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	targ
E (GeV)	14,000	$14,\!000$	250	350	500	$1,\!000$	125	125	≥ 500	(theo
$\mathcal{L} \text{ (fb}^{-1})$	300	3,000	250	350	500	$1,\!000$	250			
HZZ/HWW	$2 \cdot 10^{-4}$	$0.5 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$	$4 \cdot 10^{-5}$	$8 \cdot 10^{-6}$	\checkmark	\checkmark	\checkmark	< 10
$H\gamma\gamma$		0.50					0.06			< 10
$HZ\gamma$		~ 1						—		< 10
Hgg	0.20	0.06								< 10
$Ht\bar{t}$	0.24	0.05			0.29	0.08			\checkmark	< 10
$H\tau\tau$	0.07	0.008	0.01	0.01	0.02	0.06	\checkmark	\checkmark	\checkmark	< 10
$H\mu\mu$								\checkmark		< 10

Manuel Franco Sevilla

Cool Copper Collider (C³)


The most important problem for operation of a normal-conducting cavity at high fields is electrical breakdown. Cavities optimized for efficiency, high accelerating gradient and low breakdown have small irises that prevent power flow at the fundamental frequency. Individual feeds to each cavity from a common RF manifold, all in the same copper block, solve this problem. Modern numerically controlled manufacturing techniques can build appropriate manifolds and individual cavity feeds in an extremely cost-effective way. We have also discovered that operation of these cavities at 80°K increases their material strength and conductivity, giving marked improvements in performance. These two innovations lead to the C^3 concept, a new elevated baseline for normal-conducting electron accelerators.

2110.15800


	Sub-Domain			
Sources	Injectors	8	35	
	Damping Rings	12		
	Beam Transport	15		
Main Linac	Cryomodule	10	33	
	C-band Klystron	23		
BDS	Beam Delivery and Final Focus		13	
	IR	5		
Support Infrastructure	Civil Engineer		19	
	Common Facilities	11		
	Cryo-plant	3		
Total	3.7B\$	100	100	

Vacuum Space for Distributed Coupling Linac

Collider	NLC[28]	CLIC[29]	ILC[5]	C^3	
CM Energy [GeV]			250 (500)	250	
$\frac{\sigma_z [\mu m]}{\sigma_z [\mu m]}$	150	70	300	100	
$\beta_x \text{ [mm]}$	10	8.0	8.0	12	
β_{u} [mm]	0.2	0.1	0.41	0.12	
ϵ_x [nm-rad]	4000	900	500	900	
ϵ_{y} [nm-rad]	110	20	35	20	
Num. Bunches per Train	90	352	1312	133	
Train Rep. Rate [Hz]	180	50	5	120	
Bunch Spacing [ns]	1.4	0.5	369	5.26	
Bunch Charge [nC]	1.36	0.83	3.2	1	
Beam Power [MW]	5.5	2.8	2.63	2	
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	
	(w/ IP dil.)	$(\max is 4)$			
Gradient $[MeV/m]$	37	72	31.5	70	
Effective Gradient [MeV/m]	29	57	21	63	
Shunt Impedance $[M\Omega/m]$	98	95		300	
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	
Site Power [MW]	121	168	125	$\sim \! 150$	
Length [km]	23.8	11.4	20.5~(31)	8	
L* [m]	2	6	4.1	4.3	

