Need for amplitude analysis in the discovery of new hadrons

Snowmass

Arkaitz Rodas
Joint Physics analysis center

Full-time members

Misha
Cesar
Daniel
Viktor
Sergi

Alessandro
Lukasz
Astrid
Vincent
Adam

Miguel
Akaitz
Robert
Jorge

Support for amplitude analyses
1 Motivation

DOE Long Range Plan

REACHING FOR THE HORIZON

- Ordinary theory → build experiment → describe it!!

- QCD → Known theory → cannot solve it

- “... hadron spectroscopy illuminates the QCD interaction that binds quarks.”

The Site of the Wright Brothers’ First Airplane Flight

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

Support for amplitude analyses
1 Motivation

Looking for the beyond?

- \(\sigma(e^+e^\rightarrow all) \sim \)

- Physics beyond what’s known:
 1. Muon manetic moment \(\rightarrow (g-2)_\mu \)
 2. Nucleons mass dependance? \(\rightarrow \sigma_{\pi N} \)
 3. Rare B decays

Support for amplitude analyses

A. Rodas
1 Motivation

- "Simple" analyses

\[t_\ell(s) = \frac{m\Gamma}{(s-m_R)^2 - im\Gamma} \]

Isolated, elastic, narrow

- Lattice too

This plot → Not exactly QCD

[Dudek et al. 2011]
Recent status

- Lots of modern data \leftrightarrow simplistic models?
- Future experiments \leftrightarrow Theory in place?
- Lattice QCD \leftrightarrow Role of amplitudes?
- Accessing new phenomena \leftrightarrow Toolkit?
1 Motivation

- More complicated hadrons??

- Multi-pole structures??

3-body effects

[Graph showing data and analysis]

Support for amplitude analyses

[Mai et al. 2015]
- \(f_0(500) / \sigma \, d_\sigma < 4 \) fm \(\rightarrow \) final products

- Weak \(\pi, K, \eta \) decay \(\tau_{\pi^+} \sim 2 \times 10^{-8} \) s \(\rightarrow \sim \) meters

- Now this is complicated!!

- Model to describe this?
Motivation

- EXPERIMENT

- LATTICE QCD

Amplitude analyses: S-matrix

- Unitary \rightarrow final states
- Symmetries \rightarrow flavor symmetry
- First-principles \rightarrow basic requirements

Observables
Theory support for spectroscopy

Amplitude analyses: 3-body
- FF, decays \rightarrow KT eqs.
- Learning more \rightarrow X(3872)
- New challenges \rightarrow a1(1260)
- Lattice QCD

Ellaborated resonance studies
- Model-independent extractions??
- Broad objects \rightarrow $\sigma/f_0(500)$, $\kappa/K_0^*(700)$, $\pi_1(1600)$
- Near-threshold resonances \rightarrow $f_0(980)$, $P_c(4312)^+$

New techniques: ML / AI
- Complementary information on their nature \rightarrow $P_c(4312)^+$, $Z_c(3900)$

Experiment and theory bound together!!
Amplitude Formalism: Khuri-Treiman

Studying 3 particle decays

- \(F(s, t, u) \approx F(s) + F(t) + F(u) \)
- \(\omega \rightarrow 3\pi \rightarrow \text{transition form factor} \) [Albaladejo et al. 2020]

- \(\eta \rightarrow 3\pi \rightarrow Q^2 = \frac{m_s^2 - (m_d^2 + m_u^2)/4}{m_d^2 - m_u^2} \)
- \(\gamma^* \rightarrow 3\pi \rightarrow (g - 2)\mu \) HVP and Hlbl

Support for amplitude analyses

A. Rodas
Amplitude Formalism: 3 body

- From lattice QCD $\rightarrow 3\pi \rightarrow$ Formalism is ready

[Hansen et al. 2021]

- Including resonances $\rightarrow a_1(1260)$ extraction
- Future: $X(3872)$
- Far Future: 4π analyses \rightarrow Glueballs

[Sadasivan et al. 2022]

Support for amplitude analyses A. Rodas
Resonance studies

- Isoscalar \((0^{++})\) Glueball production \(a(s)\)

- \(S\)-matrix principles \(\Rightarrow Im a(s) = \rho(s)t^*(s)a(s)\)

- Production \(P(f_0(1710))/P(f_0(1500)) \gg 1\)

- Suggests \(f_0(1710)\) predominant Glueball

Support for amplitude analyses
Resonance studies

- $$\pi_1(1400)$$ vs $$\pi_1(1600)$$
- One hybrid meson $$\pi_1(1600)$$

- Experiment + pheno + lattice QCD agree
 Confirmed by recent exp. and lat works
 [Woss et al. 2020]
 [Kopf et al. 2019]

- BESIII partner?

- There should be two!!
Resonance studies

- $\pi_1(1600) \leftrightarrow$ asymmetry

- **GlueX** \rightarrow double-Regge exchanges

[Bibrzycki et al. 2021]
Resonance studies

- Pentaquark γ-prod

- Compatible with available data!

- Future facilities \rightarrow XYZ at EIC/JLab ??

[Justin’s talk]
AI for Exotic searches

- ML/AI to help us?
- Main benefit: Unbiased "model" selection

- $P_c(4312)^+ \rightarrow VB$ state coupling strongly to $\Sigma_c^+D^0$

[Ng et al. 2021]
Prospects

- Exciting times for spectroscopists!
- Lots of new Experiments and Lattice QCD information

- High precision → Modern reaction techniques
- Exotic hadrons → Coupled channels
- Exotic hadrons → Multi-body states
- EM effects → size/structure
- Exotics
- Approaching phys. m_π
- Future 3 body analyses
- Crucial next few years!!
New experiments

- XYZ at the EIC

- Selecting sensitive observables

- JLab Hall C → new information