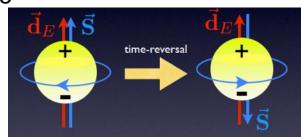

EDMs and the search for new physics

Tanmoy Bhattacharya Los Alamos National Laboratory

May 18, 2022

LA-UR-22-24591


The Whitepaper

Why EDMs?

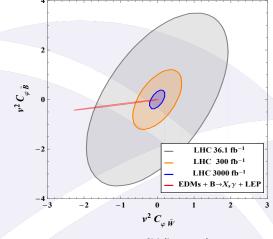
- CP violation in excess of Standard Model contribution must exist.
 - Too much matter in the universe.
 - Can't be present initially.
 - SM CP-violation too small to create it.
- If BSM CP-violation couples to the baryonic sector
 - Typically gives rise to EDMs,
 - Much larger than the tiny SM contribution.
- Observation of EDMs starting point for investigation into
 - Nature of CP-violation,
 - Whether spontaneous or explicit.
- Opportunity for improvement!

Low energy description

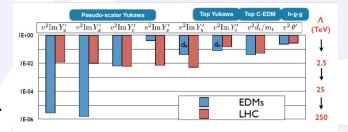
- At low energies, EDMs of elementary particles, nuclei and atoms arise from:
 - EDMs of elementary particles (ignoring neutrinos)
 - **Electrons**
 - Neutrons
 - Protons
 - CP-violation in electron-nucleus interactions
 - CP-violation in pion-nucleon interactions
- Above the weak-breaking scale, these come from:
 - QCD topological term
 - EDMs of guarks and electrons
 - Chromo-EDMs of quarks and gluons
 - Four-fermi interactions

Probes high scales

Arise at a very high scale if at one-loop


10⁻²⁹ e cm Flectron FDM

10⁻²⁹ e cm Quark EDM


10⁻²⁹ cm Quark cEDM

10⁻²⁹ cm/100 MeV Gluon cEDM

- Order of magnitude lower reach
 - If further loop-suppressed,
 - Has other suppression (e.g., flavor)
 - Has small phases
- Often complementary to accelerator searches.

Cirigliano et al., PRL 123, 051801 (2019)

Pseudo-scalar Yukawas in units of SM Yukawa m_q/v

$\mathcal{L} =$	$\frac{m_q}{m_q}$	$\tilde{\kappa}_q$	$\bar{q}i\gamma_5q$	h
	77			

Cirigliano et al... PRD 94 (2016) 016002 48 TeV

130 TeV

250 TeV

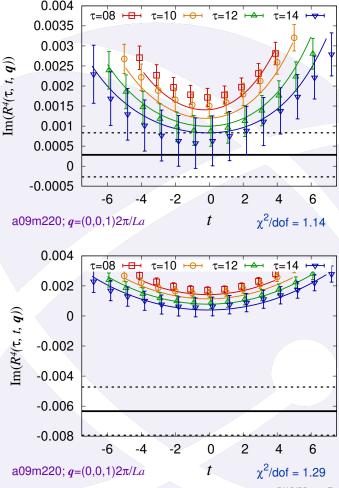
260 TeV

	$\tilde{\kappa}_u$	$\tilde{\kappa}_d$	$\tilde{\kappa}_s$	$\tilde{\kappa}_c$	$\tilde{\kappa}_b$	$ ilde{\kappa}_t$
\prod	0.45	0.11	58	2.3	3.6	0.01

Needs combination of theory and experiments

- Most coefficients very poorly known
- Lattice calculations provide precision
- Currently available for
 - u and d Quark EDM contribution to nucleon EDM
 - Semileptonic 4-fermion (u and d with lepton) contribution to electron-nucleon coupling

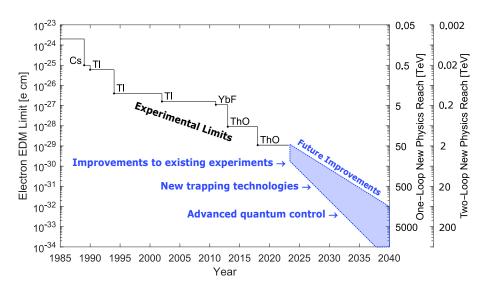
$$\begin{aligned} d_n &= -(0.0015 \pm 0.0007) \ e \ \vartheta \ \text{fm} \\ &- (0.20 \pm 0.01) d_u + (0.78 \pm 0.03) d_d + (0.0027 \pm 0.016) d_s \\ &- (0.55 \pm 0.28) e \tilde{d}_u - (1.1 \pm 0.55) e \tilde{d}_d \pm (50 \pm 40) e \ w \ \text{MeV} \end{aligned}$$

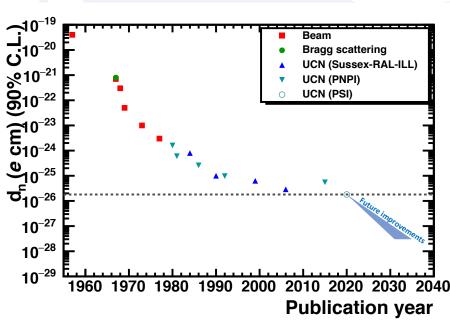

$$\bar{g}_0 = (5 \pm 10)(\tilde{d}_u + \tilde{d}_d) \,\text{fm}^{-1}$$

$$\bar{g}_1 = (24^{+40}_{-10})(\tilde{d}_u - \tilde{d}_d) \,\text{fm}^{-1}$$

Lattice calculations

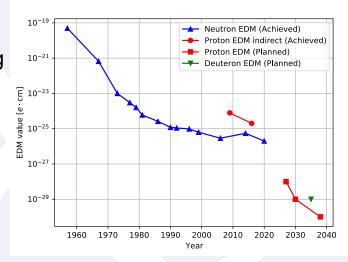
- Lattice calculations provide precision
- Have to control systematics: finite spacing, volume, unphysical parameters, matching, ...
- Plagued by systematic effects
 - CP violation typically sensitive to low-lying pion excitations
 - Local nucleon sources also couple to $N\pi$ states
 - Difficult to isolate for light pion masses
 - Seen to be important in many places
- More expensive calculations needed to control these systematics.
 - May need innovative solutions
- Chiral perturbation theory can provide guidance.




Need multiple systems

- More than one low-energy CPV quantity: d_n, d_p, g₀, g₁, d_e, C_S, C_P, C_T, ...
- Need EDM of more than one system
 - Neutron EDM: d_n
 - Proton EDM: d_p
 - Nuclear/Diamagnetic atoms/molecules EDM (¹⁹⁹Hg, ¹²⁹Xe, ²²⁵Ra): d_n, d_p, g₀, g₁
 - Paramagnetic atoms and molecules (ThO, HfF+) EDM: d_e, C_S, C_P, C_T, ...
- Currently n and Hg most constraining (assuming single term) for d_n, d_p, g₀
- Currenty TIF best for g₁
- Molecules, in general, can have large internal fields (but, Schiff's theorem)

Improvement Over Time



Opportunity: Storage Rings

- Useful for charged particles.
 - Highly polarized and along beam axis
 - At magic momentum (in-plane precession frozen)
- Early systems: p, ²H, ³He (and μ)
 - Can reach $d_p < 10^{-29} e$ cm in five years of data taking
- Also sensitive to dark matter

Snowmass

- EDMs one of the best short-term insight into BSM theories
- Needs multiple systems and interdisciplinary science
 - Input from nuclear and AMO physics needed
 - Needs synergistic experimental and theory progress
 - Needs various theoretical advances
 - Effective field theories to see correlations in particular BSM models
 - Chiral perturbation theory to organize low-energy observations
 - AMO and Nuclear structure calculations
 - Lattice QCD to handle string interactions
- Proton storage ring a window of opportunity

