Theory of CKM physics and CP violation

Stefan Schacht
University of Manchester

Snowmass Rare Processes and Precision Measurements Frontier Spring Meeting

Cincinnati, Ohio, May 2022

This is where we are.

[CKMfitter, http://ckmfitter.in2p3.fr]

Community effort due to both theoretical and experimental progress.

Please note:

This is my personal list, so the overview is biased towards my own work.

Signs of a new era? Anomalies in Flavor Physics

• There are several anomalies. We are not sure what is behind them.

- Semileptonic and rare B decay data: Lepton-flavor non-universality?
- CP is not a fundamental symmetry.

- Therefore, generically, BSM physics will also violate CP.
- If anomalies confirmed: Expect deviations from SM also in CPV.

Outline

Charm CP Violation

Beauty CP Violation

CKM anomalies

Meson Mixing

Charm CP Violation

Charm CP Violation:

New unique gate to flavor structure of up-type quarks.

$$\Delta A_{CP} \approx a_{CP}^{
m dir}(D^0 \to K^+K^-) - a_{CP}^{
m dir}(D^0 \to \pi^+\pi^-) = (-0.164 \pm 0.028)\%$$
 [LHCb 1903.08726, HFLAV 1909.12524]

- Expected unobservably tiny.
- But it is not.
- The jury is still out: SM or not?
- NP interpretations: Z', 2HDMs,
- $r_{OCD} \equiv \text{Loop/Tree} = O(1)$?

"
$$\Delta U = 0 \text{ rule}$$
": $r_{\rm QCD} \sim 1$ [Grossman StS 1903.10952]

- We claim $\Delta U = 0$ follows similar pattern as generalized $\Delta I = 1/2$ rule.
- Both due to low energy QCD, rescattering.

"
$$\Delta I = 1/2$$
 rules" for isospin in $P^+ \to \pi^+ \pi^0$, $P^0 \to \pi^+ \pi^-$, $P^0 \to \pi^0 \pi^0$

Relevant ratio of strong isospin matrix elements:

$r_{QCD}^{\Delta I=1/2} \equiv A^{\Delta I=1/2}/A^{\Delta I=3/2}$	Kaon	Charm	Beauty
Data	22	2.5	1.5
"No QCD" limit	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$
Enhancement	<i>O</i> (10)	O (1)	$O(\alpha_s)$

[D: Franco Mishima Silvestrini 2012, B: Grinstein Pirtskhalava Stone Uttayarat 2014]

 Rescattering most important in K decays, less important but still significant in D decays, and small in B decays.

Comparison of approaches: What is r_{QCD} ?

Data

Assuming the SM, and $\delta_{\rm QCD} = O(1)$, the data implies $r_{\rm OCD}^{\Delta U=0} \sim 1$.

Ref.	Theory Method/Assumptions	$r_{QCD}^{\Delta U=0}$	SM/NP
[Grossman StS 1903.10952]	Analogy to $\Delta I = 1/2$ rules	<i>O</i> (1)	SM
	Low energy QCD, rescattering is $O(1)$		
[Brod Kagan Zupan 1111.5000]	Phenomenological analysis	<i>O</i> (1)	SM
[Soni 1905.00907, StS Soni 2110.07619]	Resonance model	<i>O</i> (1)	SM
[Petrov Khodjamirian 1706.07780]	Light Cone Sum Rules	$O(\alpha_s/\pi)$	NP
[Chala Lenz Rusov Scholtz 1903.10490]	Resonances in principle incorporable.		

What next? Apply methods to $\Delta I = 1/2$ rule in charm! Reproduction of $\Delta I = 1/2$ crucial for NP case in $\Delta U = 0$.

Key Measurements for $D \rightarrow PP'$.

A_{CP} sum rules including breaking effects [Müller Nierste StS 1506.04121]

- SM sum rule 1: $D^0 \to K^+K^-$, $D^0 \to \pi^+\pi^-$. $D^0 \to \pi^0\pi^0$.
- SM sum rule 2: $D^+ \rightarrow K_S K^+$, $D_s^+ \rightarrow K_S \pi^+$, $D_s^+ \rightarrow K^+ \pi^0$.

Isospin Analysis

[Grossman Kagan Zupan 1204.3557]

• Extract $\Delta I = 1/2$ and $\Delta I = 3/2$ MEs from

$$D^0 \to \pi^+\pi^-, D^+ \to \pi^+\pi^0, D^0 \to \pi^0\pi^0.$$

• $a_{CP}^{\text{dir}}(D^+ \to \pi^+ \pi^0) = 0$. Higher orders < sensitivity.

What next?

- Measurements of CP asymmetries in all SCS D → PP' decays.
- Need sum rules for multi-body decays at higher order in SU(3)_F.

What next? Check dynamical mechanism from data.

$$D^{0} \xrightarrow{V_{cs}^{*}V_{ud}} \pi^{+}\pi^{-}$$

$$D^{0} \xrightarrow{V_{cs}^{*}V_{us}} K^{+}K^{-} \xrightarrow{QCD} \pi^{+}\pi^{-}$$

$$D^{0} \xrightarrow{\pi^{+}} f_{0} \xrightarrow{K^{+}} D^{0} \xrightarrow{K^{+}} f_{0} \xrightarrow{\pi^{+}}$$

Assumptions

[StS and A. Soni, 2110.07619]

- Amplitudes to I = 0 states dominated by f_0 close to D^0 mass.
- Amplitudes into I = 1 states relatively suppressed.

Resonance structure can also be incorporated in future LCSR calculations.

[Khodjamirian Petrov 1706.07780]

Predictions in Scalar Resonance Model

[StS and A. Soni, 2110.07619]

What next? Study of $\Delta U = 0$ in three-body decays

[Dery Grossman StS Soffer 2101.02560]

$$\begin{split} \mathcal{A}(D^0 \to \pi^+ \rho^-) &= -\lambda \, T^{P_1 V_2} - V_{cb}^* V_{ub} \, R^{P_1 V_2} \\ \mathcal{A}(D^0 \to \pi^- \rho^+) &= -\lambda \, T^{P_2 V_1} - V_{cb}^* V_{ub} \, R^{P_2 V_1} \end{split}$$

Time-integrated CP asym. of 2-body decays give only combinations

$$|\widetilde{R}^{P_1V_2}|\sin(\delta_{P_1V_2})$$
 and $|\widetilde{R}^{P_2V_1}|\sin(\delta_{P_2V_1})$,

but not magnitudes and phases separately.

- Three body decay changes 2 things:
 - We have additional kinematic dependences.
 - Only in a three-body decay we have interference between $D^0 \to \pi^+(\rho^- \to \pi^-\pi^0)$ and $D^0 \to \pi^-(\rho^+ \to \pi^+\pi^0)$.

▶Extraction of all parameters from time-integrated CP meas.

Local $a_{CP}^{\rm dir}(D^0 \to \pi^+\pi^-\pi^0)$ in overlap region of ρ^\pm

[Dery Grossman StS Soffer 2101.02560]

Numerical example:

 $\widetilde{R}^{P_1 V_2} = \exp(i\pi/2), \quad \widetilde{R}^{P_2 V_1} = \frac{1}{4} \exp(i\pi/3)$

SU(3)-flavor

- SU(3): Approximate symmetry for the light quarks u, d, s.
- Very useful, but O(30%) breaking from corrections.
- Going to higher order: complicated.

$$\begin{array}{c} (15) \otimes (8) = (42) \oplus (24) \oplus (15_1) \oplus (15_2) \oplus (15') \oplus (\bar{6}) \oplus (3) \\ (\bar{6}) \otimes (8) = (24) \oplus (15) \oplus (\bar{6}) \oplus (3) \\ \end{array}$$

Decay d	$B_1^{3_1}$	$B_1^{3_2}$	$B_8^{3_1}$	$B_8^{3_2}$	$B_8^{ar{6}_1}$	$B_8^{ar{6}_2}$	$B_8^{15_1}$	
$D^0 \to K^+K^-$	$\frac{1}{4\sqrt{10}}$	$\frac{1}{8}$	$\frac{1}{10\sqrt{2}}$	$\frac{1}{4\sqrt{5}}$	$\frac{1}{10}$	$-\frac{1}{10\sqrt{2}}$	$-\frac{7}{10\sqrt{122}}$	
$D^0 o \pi^+\pi^-$	$\frac{1}{4\sqrt{10}}$	$\frac{1}{8}$	$\frac{1}{10\sqrt{2}}$	$\frac{1}{4\sqrt{5}}$	$-\frac{1}{10}$	$\frac{1}{10\sqrt{2}}$	$-\frac{11}{10\sqrt{122}}$	
$D^0 o \bar{K}^0 K^0$	$-\frac{1}{4\sqrt{10}}$	$-\frac{1}{8}$	$\frac{1}{5\sqrt{2}}$	$\frac{1}{2\sqrt{5}}$	0	0	$-\frac{9}{5\sqrt{122}}$	
$D^0 \to \pi^0 \pi^0$	$-\frac{1}{8\sqrt{5}}$	$-\frac{1}{8\sqrt{2}}$	$-\frac{1}{20}$	$-\frac{1}{4\sqrt{10}}$	$\frac{1}{10\sqrt{2}}$	$-\frac{1}{20}$	$\frac{11}{20\sqrt{61}}$	

Solving the Problem of Higher Order SU(3)

[Gavrilova Grossman StS, 2205.soon]

We proved several theorems enabling calculations to arbitrary order.

- We are able to determine a priori up to which order sum rules exist.
- We do not need explicit Clebsches. Big complexity reduction.
- Hope: Opens the door for precision in hadronic decays.
- Close a gap between theory and experiment.

Take advantage of precision data on nonleptonic decays.

This is just the beginning of the exploration of charm CPV

- Crucial: CP asymmetries of all SCS two-body charm decays.
- Necessary to benefit from insights of flavor symmetry sum rules.
- Most promising for next observation: $D \to K_S K_S$ and $D \to K K^*$.
- Test picture of flavor symmetry breaking: at expected level (30%)?
- Important to search for optimized observables for multi-body decays.
 How can we maximize sensitivity to CP violation?
 What is the smartest binning for multi-body decays?
- How can we formally account for the phase space effects when comparing Dalitz plots that are related by flavor symmetries?

Beauty CP Violation

Extraction of γ from $B \to DK$

- Can be used to measure γ with almost no theory uncertainties.
- Recently: charm parameters and γ extracted in one framework.
- How can we make optimized use of the available data?
- Look for best binning. Currently: Model used to find best binning.
 Unclear if possible to find better binning/how to adjust based on available charm data.
- Other idea: Unbinned methods. Binning may loose some sensitivity.
- But: Trade-off which statistical method is used.
- More work needed to check how we optimize the methodology.

Nonleptonic $B \rightarrow DP$ decays

[Plot courtesy of Nicola Skidmore]

- Lesson for QCDF? E.g. hadronic uncertainties underestimated?
- BSM effect in tree-level decays? W' of extended electroweak sector?

Charmless b decays

$K\pi$ puzzle

- Tension with isospin sum rule for $B \to K\pi$ CP asymmetries ~ 1.4 σ .
- More precise measurements of all involved CP asymmetries crucial: $B^0 \to K^0 \pi^0$. $B^0 \to K^+ \pi^-$, $B^+ \to K^0 \pi^+$, $B^+ \to K^+ \pi^0$.

Baryonic decay modes

- Expect direct CPV from interference of $b \to u$ and $b \to d$, s.
- Rich underlying resonance structure: potentially large CPV effects.
- First evidence for baryonic CPV in $\Lambda_b \to p\pi^-\pi^+\pi^-$ (LHCb)
- Further searches ongoing.

CKM Anomalies

CKM anomalies: V_{cb} – V_{ub} puzzle

[HFLAV 2021]

- V_{cb} important for many predictions, including ΔM_q , $B_q \to \mu^+ \mu^-$, ε_K .
- $|V_{ub}/V_{cb}|$ directly constrains one side of the unitarity triangle.
- Future opportunity: V_{cb} from leptonic decay $B_c^+ \to \tau^+ \nu$.

New results from Lattice QCD

$B \to D^*$: [FNAL/MILC 2105.14019]

 $|V_{cb}| = 38.57(0.70)_{th}(0.34)_{exp} \cdot 10^{-3}$

 $B_c \to J/\psi$: [HPQCD 2007.06956] $B_s \to D_s^*$: [HPQCD 2105.11433]

 $|V_{cb}| = 43.0(2.1)_{\text{latt}}(1.7)_{\text{exp}}(0.4)_{\text{EM}} \cdot 10^{-3}$

CKM unitarity: First row (Cabibbo Anomaly)

First row CKM unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$
.

Deviation between 2–4 σ .

- V_{ud} : nuclear beta decays, neutron decays, pion beta decays.
- V_{us} : kaon decays, hyperon decays, tau decays.
- $|V_{ub}|^2 \simeq 1.6 \cdot 10^{-5}$ negligible at current uncertainties: Up to $O(\lambda^6) \simeq 0.0001$, we can write $V_{ud} = \cos \theta_C$, $V_{us} = \sin \theta_C$.
- Note that testing for equality of Cabibbo angle is not identical to unitarity test.

CKM unitarity: Second row

Second row unitarity

$$|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1.$$

Not yet conclusive because of large errors in V_{cd} and V_{cs} .

- $V_{cd}: D \to \pi l \nu, D^+ \to \mu \nu$
- V_{cs} : $D \to Kl\nu$, $D_s^+ \to \mu\nu$, $D_s^+ \to \tau\nu$.
- Semileptonic decays require form-factors.
- Leptonic decays require decay constants: very well-known.
- Continuing experimental progress will enable more precise test.

Meson Mixing

Comparison of Theory vs. Experiment

Mixing

- Mixing described by 2x2 matrix $M^q i\Gamma^q/2$
- Diagonalizing \Rightarrow heavy B_H and light B_L mass eigenstates.
- Masses $M_{H,L}$ and widths $\Gamma_{H,L}$.

Theoretical quantities:
$$|M_{12}^q|$$
, $|\Gamma_{12}^q|$, $\arg\left(-M_{12}^q/\Gamma_{12}^q\right)$.

Plays important role in recent models of baryogenesis.

[Elor Escudero Nelson 1810.00880, Alonso-Alvarez Elor Escudero 2101.02706]

Status quo

Theory: NNLO completed!

[Gerlach Nierste Shtabovenko Steinhauser 2205.soon]

$$\Delta\Gamma_s^{\text{theory}} = (0.076 \pm 0.017)ps^{-1}$$

Experiment [LHCb 2104.04421, 2011.12041, CMS 2007.02434, ATLAS 2001.07115, HFLAV]

$$\Delta M_s^{\text{exp}} = (17.7656 \pm 0.0057) ps^{-1}$$
 $\Delta \Gamma_s^{\text{exp}} = (0.082 \pm 0.005) ps^{-1}$

$$a_{fs}^{s,\text{exp}} = (60 \pm 280) \cdot 10^{-5}$$

What next?

- NNLO also for a_{fs}^s .
- Current NLO result: $a_{fs}^s = (2.02_{-0.19}^{+0.17}) \cdot 10^{-5}$.

[Gerlach Nierste Shtabovenko Steinhauser 2202.12305]

Need more precise measurement of a^s_{fs}.

Non-perturbative Mixing Matrix elements

[Luzio Kirk Lenz Rauh 1909.11087]

- Good agreement between HQET sum rules (blue) and lattice.
- Further convergence of lattice necessary for envisioned 1% precision.

Constraints on New Physics in Mixing

- Assumptions:
 - 1) NP enters at loop level.
 - 2) Conserve CKM unitarity.
- Then mixing parametrizable as:

$$M_{12}^q = (M_{12}^q)_{SM} (1 + \frac{\mathbf{h_q}}{e^{2i\sigma_q}}).$$

[Charles et al, 2006.04824]

There is a lot of parameter space to explore!

Charm Mixing

- Mixing parameters $x \equiv \Delta m/\Gamma$ and $y \equiv \Delta \Gamma/(2\Gamma)$.
- 2021: First observation of $x \neq 0$ with $> 7\sigma$. [LHCb 2106.03744].
- Uncertainty of y reduced by a factor two in [LHCb 2110.02350].
- $|q/p| \neq 1$ would indicate CPV in mixing.
- $Arg(q/p) \neq 0$ would indicate CPV from interference mixing/decay.
- SM: hard to calculate. Qualitative agreement with SM.

Exclusive Approach: Hadron-Level

$$\begin{split} &\Gamma_{12}^{D} = \sum_{n} \rho_{n} \left\langle \overline{D^{0}} \right| \mathcal{H}_{eff}^{\Delta C=1} \left| n \right\rangle \left\langle n \right| \mathcal{H}_{eff}^{\Delta C=1} \left| D^{0} \right\rangle \,, \\ &M_{12}^{D} = \sum_{n} \left\langle \overline{D^{0}} \right| \mathcal{H}_{eff}^{\Delta C=2} \left| D^{0} \right\rangle + \mathcal{P} \sum_{n} \frac{\left\langle \overline{D^{0}} \right| \mathcal{H}_{eff}^{\Delta C=1} \left| n \right\rangle \left\langle n \right| \mathcal{H}_{eff}^{\Delta C=1} \left| D^{0} \right\rangle}{m_{D}^{2} - E_{n}^{2}} \end{split}$$

- n: all possible hadronic states. ρ_n : density of state. \mathcal{P} : principal value.
- Result: $y \sim 1\%$, agreeing with measurements.

What next?

- More experimental input needed (BRs and phases).
- Theory: Need to take into account more SU(3)_F breaking effects.
- Long-term: Lattice predictions?

Inclusive Approach: Quark-Level

- Heavy-Quark Expansion (HQE), motivated by $\tau(D^+)/\tau(D^0)$.
- Needed non-perturbative matrix elements from sum rules or Lattice
- Severe GIM-cancellations may take place.

Recent Developments

[Lenz Piscopo Vlahos 2007.03022]

- GIM depends on scales entering different box contributions.
 These contain different amounts of strangeness.
- No need that these scales are the same ⇒ GIM cancellation broken.
- HQE uncertainty gets larger, including y^{exp}.

What next?

- Higher orders in HQE expansion.
- After Γ_{12} also M_{12} , e.g. with dispersion relations.

Conclusions

- So much more data and theory ideas: New era in flavor physics.
- We need to keep:
 - Theory error < Experimental error.
- No matter what, we will learn sth new: QCD or New Physics.

BACK-UP

Experimental Agreement for $B \rightarrow DP$ decays

[Plot courtesy of Nicola Skidmore]

Charm: Non-perturbative Diagrams

Direct CP Violation is an Interference Effect

$$a_{CP}^{\rm dir}(f) \equiv \frac{|\mathcal{A}(D^0 \to f)|^2 - |\mathcal{A}(\overline{D}^0 \to f)|^2}{|\mathcal{A}(D^0 \to f)|^2 + |\mathcal{A}(\overline{D}^0 \to f)|^2} \approx 2(r_{\rm CKM} \sin \varphi_{\rm CKM}) (r_{\rm QCD} \sin \delta_{\rm QCD}).$$

 $f = \mathsf{CP}\text{-eigenstate}.$

The decay amplitude:

$$\mathcal{A} = 1 + r_{\text{CKM}} r_{\text{OCD}} e^{i(\varphi_{\text{CKM}} + \delta_{\text{QCD}})}$$

- r_{CKM}: real ratio of CKM matrix elements.
- φ_{CKM} : weak phase.
- rocp : real ratio of hadronic matrix elements.
- $\delta_{\rm OCD}$: strong phase.

Where does the interference come from?

$$D^{0} \xrightarrow{V_{cd}^{*} V_{ud}} \pi^{+} \pi^{-}$$

$$D^{0} \xrightarrow{V_{cs}^{*} V_{us}} K^{+} K^{-} \xrightarrow{\text{QCD}} \pi^{+} \pi^{-}$$

$$D^{0} \xrightarrow{V_{cd}^{*} V_{ud}} \pi^{+} \pi^{-} \xrightarrow{\text{QCD}} K^{+} K^{-}$$

$$D^{0} \xrightarrow{V_{cs}^{*} V_{us}} K^{+} K^{-}$$

 $KK \leftrightarrow \pi\pi$ rescattering into same final state.

Weak and strong factors

$$\frac{\mathcal{A}(D \to \pi\pi \to KK)}{\mathcal{A}(D \to KK)} = \left(r_{\text{CKM}}e^{i\varphi_{\text{CKM}}}\right)\left(r_{\text{QCD}}e^{i\delta_{\text{QCD}}}\right)$$

- r_{QCD}: ratio of rescattering amplitudes.
- $\delta_{QCD} = O(1)$: strong phase.
- $r_{\text{CKM}} = 1$: ratio of CKM factors, $\left| V_{cd}^* V_{ud} / (V_{cs}^* V_{us}) \right|$
- $\varphi_{\text{CKM}} \approx 6 \cdot 10^{-4}$: deviation from 2×2 unitarity.

Prediction

$$\Delta a_{CP}^{dir} \sim 10^{-3} \times r_{QCD}$$

• *U*-spin decomposition: $r_{\rm QCD} = r_{\rm OCD}^{\Delta U=0} \equiv \mathcal{A}^{\Delta U=0}/\mathcal{A}^{\Delta U=1}$.